This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373433 #7 Jun 06 2024 04:28:23 %S A373433 1,1,2,12,120,1920,43920,1370880,55843200,2879815680,183330604800, %T A373433 14122244505600,1294628759424000,139287595371724800, %U A373433 17379949655535667200,2489494639794978816000,405724534220435189760000,74646464089618378653696000,15396938399483145082626048000 %N A373433 a(n) = A000111(n) * A000142(n). Row sums of A373434. %F A373433 a(n) = n! * 2^n * |Euler(n, 1/2) + Euler(n, 1)| for n >= 1. %F A373433 a(n) ~ ((2*n^2)/(Pi*e^2))^n*(8*n + 4/3). %p A373433 A373433 := n -> ifelse(n = 0, 1, n! * 2^n * abs(euler(n, 1/2) + euler(n, 1))): %p A373433 seq(A373433(n), n = 0..18); %t A373433 A373433[n_] := 2 I^(n + 1) n! PolyLog[-n, -I]; A373433[0] := 1; %t A373433 Table[A373433[n], {n, 0, 18}] %o A373433 (SageMath) # Algorithm of Ludwig Seidel (1877). %o A373433 def A373433_list(n) : %o A373433 R = []; S = []; A = {-1:0, 0:1}; k = 0; f = 1; e = 1 %o A373433 for i in (0..n) : %o A373433 Am = 0; A[k + e] = 0; e = -e %o A373433 for j in (0..i) : Am += A[k]; A[k] = Am; k += e %o A373433 R.append(Am); S.append(f*Am); f *= i + 1 %o A373433 return S %o A373433 print(A373433_list(18)) %Y A373433 Cf. A000111, A000142, A373434. %K A373433 nonn %O A373433 0,3 %A A373433 _Peter Luschny_, Jun 04 2024