This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373434 #16 Jun 07 2024 08:03:43 %S A373434 1,1,1,1,1,5,5,1,1,14,45,45,14,1,1,33,255,671,671,255,33,1,1,71,1131, %T A373434 6311,14446,14446,6311,1131,71,1,1,146,4420,46571,206932,427370, %U A373434 427370,206932,46571,4420,146,1,1 %N A373434 Triangle read by rows: Coefficients of the Eulerian polynomials EC(n, x)*EZ(n, x), where EC denote the classical Eulerian and EZ the zig-zag Eulerian polynomials. %C A373434 There are various conventions for indexing Eulerian numbers. The one used here determines that all corresponding polynomials have p(n, 0) = 1. This applies equally to the classical Eulerian polynomials with coefficients A173018, the Eulerian zig-zag polynomials with coefficients A205497, and the polynomials here. %H A373434 Peter Luschny, <a href="/A373434/a373434.png">Illustrating the polynomials</a>. %e A373434 Triangle T(n, k) starts: %e A373434 [0] 1; %e A373434 [1] 1; %e A373434 [2] 1, 1; %e A373434 [3] 1, 5, 5, 1; %e A373434 [4] 1, 14, 45, 45, 14, 1; %e A373434 [5] 1, 33, 255, 671, 671, 255, 33, 1; %e A373434 [6] 1, 71, 1131, 6311, 14446, 14446, 6311, 1131, 71, 1; %e A373434 ... %e A373434 Written as polynomials P(n, x): %e A373434 [0] 1; %e A373434 [1] 1; %e A373434 [2] 1 + x; %e A373434 [3] 1 + 5*x + 5*x^2 + x^3; %e A373434 [4] 1 + 14*x + 45*x^2 + 45*x^3 + 14*x^4 + x^5; %e A373434 [5] 1 + 33*x + 255*x^2 + 671*x^3 + 671*x^4 + 255*x^5 + 33*x^6 + x^7; %e A373434 ... %e A373434 P(3, x) = A205497(3, x) * A173018(3, x) = (1 + x) * (1 + 4*x + x^2) = 1 + 5*x + 5*x^2 + x^3. %p A373434 # Using the recurrence by _Kyle Petersen_ from A205497. %p A373434 R := proc(n) option remember; local F; if n = 0 then 1/(1 - q*x) else F := R(n - 1); simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end: %p A373434 EZ := (n, x) -> ifelse(n < 3, 1, expand(simplify(subs({p = 1, q = 1}, R(n))*(1 - x)^(n + 1)) / x^2)): %p A373434 EC := (n, x) -> local k; simplify(add(combinat:-eulerian1(n, k)*x^k, k = 0..n)): %p A373434 EZC := (n, x) -> expand(EZ(n, x) * EC(n, x)): %p A373434 Trow := n -> local k; if n < 2 then [1] elif n = 2 then [1, 1] else [seq(coeff(EZC(n, x), x, k), k = 0..2*n-3)] fi: %p A373434 seq(print(EZC(n, x)), n = 0..6); seq(print(Trow(n)), n = 0..6); %t A373434 R[n_] := R[n] = Module[{F}, If[n == 0, 1/(1 - q*x), F = R[n - 1]; Simplify[p/(p - q)*(ReplaceAll[F, {p -> q, q -> p}] - ReplaceAll[F, p -> q])]]]; %t A373434 EZ[n_, x_] := If[n < 3, 1, Expand[Simplify[ReplaceAll[R[n], {p -> 1, q -> 1}]*(1 - x)^(n + 1)] / x^2]]; %t A373434 eulerian1[n_, k_] := If[n == 0, 1, Sum[(-1)^j*Binomial[n + 1, j]*(k + 1 - j)^n, {j, 0, k + 1}]]; %t A373434 EC[n_, x_] := Sum[eulerian1[n, k]*x^k, {k, 0, n}]; %t A373434 EZC [n_, x_] := Expand[EZ[n, x] * EC[n, x]]; %t A373434 Trow[n_] := CoefficientList[EZC[n, x], x]; %t A373434 Table[Trow[n], {n, 0, 8}] // Flatten (* _Jean-François Alcover_, Jun 07 2024, after _Peter Luschny_'s Maple program *) %Y A373434 Cf. A173018 (Eulerian), A205497 (Eulerian zig-zag), A373433 (row sums). %K A373434 nonn,tabf %O A373434 0,6 %A A373434 _Peter Luschny_, Jun 04 2024