This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373437 #18 Jun 22 2024 15:48:37 %S A373437 2,6,14,18,38,42,50,54,62,74,86,114,122,126,134,146,150,158,162,186, %T A373437 206,218,222,254,258,266,302,314,326,342,350,366,378,386,398,402,422, %U A373437 434,438,450,458,474,482,518,542,554,558,566,578,602,618,626,654,662,666,674,686,734,746,758,762,774,794 %N A373437 Integers k such that sigma(sigma(2*k))=2*sigma(sigma(k)); sigma=A000203. %H A373437 Graeme L. Cohen and H. J. J. te Riele, <a href="https://doi.org/10.1080/10586458.1996.10504580">Iterating the sum-of-divisors function</a>, Exp. Math., 5 (1996), 91-100. %p A373437 with(numtheory): %p A373437 P := proc (q) %p A373437 local n, result: %p A373437 result := []: %p A373437 for n to q do %p A373437 if sigma(sigma(2*n)) = 2*sigma(sigma(n)) then %p A373437 result := [op(result), n]: %p A373437 end if %p A373437 end do: %p A373437 print(result): %p A373437 end proc: %p A373437 P(10^3); %t A373437 Select[Range[800],DivisorSigma[1,DivisorSigma[1,2#]]==2DivisorSigma[1,DivisorSigma[1,#]]&] (* _Stefano Spezia_, Jun 05 2024 *) %o A373437 (Python) %o A373437 from sympy import divisor_sigma as sigma %o A373437 def P(q): %o A373437 result = [] %o A373437 for n in range(1, q + 1): %o A373437 if sigma(sigma(2 * n)) == 2 * sigma(sigma(n)): %o A373437 result.append(n) %o A373437 print(result) %o A373437 P(10**3) %Y A373437 Cf. A000203, A051027. %K A373437 nonn %O A373437 1,1 %A A373437 _Rafik Khalfi_, Jun 04 2024