cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373439 Numerator of sum of reciprocals of square divisors of n.

This page as a plain text file.
%I A373439 #17 Jun 26 2024 06:01:58
%S A373439 1,1,1,5,1,1,1,5,10,1,1,5,1,1,1,21,1,10,1,5,1,1,1,5,26,1,10,5,1,1,1,
%T A373439 21,1,1,1,25,1,1,1,5,1,1,1,5,10,1,1,21,50,26,1,5,1,10,1,5,1,1,1,5,1,1,
%U A373439 10,85,1,1,1,5,1,1,1,25,1,1,26,5,1,1,1,21,91,1,1,5,1
%N A373439 Numerator of sum of reciprocals of square divisors of n.
%H A373439 Amiram Eldar, <a href="/A373439/b373439.txt">Table of n, a(n) for n = 1..10000</a>
%F A373439 Numerators of coefficients in expansion of Sum_{k>=1} x^(k^2)/(k^2*(1 - x^(k^2))).
%F A373439 a(n) is the numerator of Sum_{d^2|n} 1/d^2.
%F A373439 From _Amiram Eldar_, Jun 26 2024: (Start)
%F A373439 Let f(n) = a(n)/A373440(n). Then:
%F A373439 f(n) is multiplicative with f(p^e) = (p^2 - p^(-2*floor(e/2)))/(p^2-1).
%F A373439 Dirichlet g.f. of f(n): zeta(s) * zeta(2*s+2).
%F A373439 Sum_{k=1..n} f(k) ~ zeta(4) * n. (End)
%e A373439 1, 1, 1, 5/4, 1, 1, 1, 5/4, 10/9, 1, 1, 5/4, 1, 1, 1, 21/16, 1, 10/9, 1, 5/4, 1, 1, 1, 5/4, 26/25, ...
%t A373439 nmax = 85; CoefficientList[Series[Sum[x^(k^2)/(k^2 (1 - x^(k^2))), {k, 1, nmax}], {x, 0, nmax}], x] // Rest // Numerator
%t A373439 f[p_, e_] := (p^2 - p^(-2*Floor[e/2]))/(p^2-1); a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* _Amiram Eldar_, Jun 26 2024 *)
%o A373439 (PARI) a(n) = numerator(sumdiv(n, d, if (issquare(d), 1/d))); \\ _Michel Marcus_, Jun 05 2024
%Y A373439 Cf. A007406, A017665, A017667, A028235, A035316, A332880, A373440 (denominators).
%K A373439 nonn,frac
%O A373439 1,4
%A A373439 _Ilya Gutkovskiy_, Jun 05 2024