This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373449 #24 Feb 16 2025 08:34:06 %S A373449 1,1,0,1,1,0,1,2,1,0,1,3,3,1,0,1,4,6,5,1,0,1,5,10,14,7,1,0,1,6,15,30, %T A373449 25,11,1,0,1,7,21,55,65,53,16,1,0,1,8,28,91,140,173,100,26,1,0,1,9,36, %U A373449 140,266,448,400,222,36,1,0,1,10,45,204,462,994,1225,1122,386,56,1,0 %N A373449 Number A(n,k) of (binary) heaps of length n whose element set is a subset of [k]; square array A(n,k), n>=0, k>=0, read by antidiagonals. %C A373449 These heaps may contain repeated elements. %H A373449 Alois P. Heinz, <a href="/A373449/b373449.txt">Antidiagonals n = 0..200, flattened</a> %H A373449 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Heap.html">Heap</a> %H A373449 Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_heap">Binary heap</a> %F A373449 A(n,k) = Sum_{j=0..k} binomial(k,j) * A373451(n,k-j). %e A373449 A(3,1) = 1: 111. %e A373449 A(3,2) = 5: 111, 211, 212, 221, 222. %e A373449 A(3,3) = 14: 111, 211, 212, 221, 222, 311, 312, 313, 321, 322, 323, 331, 332, 333. %e A373449 (The examples use max-heaps.) %e A373449 Square array A(n,k) begins: %e A373449 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A373449 0, 1, 2, 3, 4, 5, 6, 7, 8, ... %e A373449 0, 1, 3, 6, 10, 15, 21, 28, 36, ... %e A373449 0, 1, 5, 14, 30, 55, 91, 140, 204, ... %e A373449 0, 1, 7, 25, 65, 140, 266, 462, 750, ... %e A373449 0, 1, 11, 53, 173, 448, 994, 1974, 3606, ... %e A373449 0, 1, 16, 100, 400, 1225, 3136, 7056, 14400, ... %e A373449 0, 1, 26, 222, 1122, 4147, 12428, 32028, 73644, ... %e A373449 0, 1, 36, 386, 2336, 10036, 34242, 98922, 251922, ... %p A373449 A:= proc(n, k) option remember; `if`(n=0, 1, %p A373449 (g-> (f-> add(A(f, j)*A(n-1-f, j), j=1..k) %p A373449 )(min(g-1, n-g/2)))(2^ilog2(n))) %p A373449 end: %p A373449 seq(seq(A(n, d-n), n=0..d), d=0..12); %t A373449 A[n_, k_] := A[n, k] = If[n == 0, 1, %t A373449 Function[g, Function[f, Sum[A[f, j]*A[n-1-f, j], {j, 1, k}]][ %t A373449 Min[g-1, n-g/2]]][2^(Length[IntegerDigits[n, 2]]-1)]]; %t A373449 Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* _Jean-François Alcover_, Jun 08 2024, after _Alois P. Heinz_ *) %Y A373449 Columns k=0-2 give: A000007, A000012, A091980(n+1). %Y A373449 Rows n=0-6 give: A000012, A001477, A000217, A000330, A001296, A207361, A001249(k-1). %Y A373449 Main diagonal gives A373450. %Y A373449 Cf. A373451. %K A373449 nonn,tabl %O A373449 0,8 %A A373449 _Alois P. Heinz_, Jun 05 2024