A373505 Numbers k such that k and k+1 both have an equal number of odd and even digits in their factorial-base representations.
25, 29, 37, 41, 55, 67, 73, 77, 85, 89, 103, 115, 727, 739, 745, 749, 757, 761, 775, 787, 793, 797, 805, 809, 823, 835, 841, 845, 853, 857, 889, 893, 901, 905, 937, 941, 949, 953, 967, 979, 985, 989, 997, 1001, 1015, 1027, 1033, 1037, 1045, 1049, 1063, 1075, 1081
Offset: 1
Examples
25 is a term since the factorial-base representations of 25 and 26 are 1001 and 1010, respectively, and both have 2 odd digits and 2 even digits.
Links
Programs
-
Mathematica
With[{max = 7}, fctBaseDigits[n_] := IntegerDigits[n, MixedRadix[Range[max, 2, -1]]]; s = Select[Range[1, max!], EvenQ[Length[(d = fctBaseDigits[#])]] && Count[d, _?EvenQ] == Length[d]/2 &]; ind = Position[Differences[s], 1] // Flatten; s[[ind]]]
-
PARI
iseq(n) = {my(p = 2, o = 0, e = 0); while(n > 0, if((n%p) %2 == 0, e++, o++); n \= p; p++); e == o;} lista(kmax) = {my(q1 = 0, q2); for(k = 1, kmax, q2 = iseq(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}
Comments