This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373464 #34 Jul 18 2024 08:54:52 %S A373464 23,47,107,191,499,647,719,809,863,1249,1439,1999,2591,2879,3023,3779, %T A373464 4079,5323,6911,7039,7127,7559,8231,8231,8747,9839,10289,10289,10499, %U A373464 10499,10529,10691,11279,11519,12959,13229,13309,13999,15551,15551,15971,18143,19207 %N A373464 Largest of a quadruple of primes p[1..4] such that (p[k]+1, k=1..4) is in geometric progression. %C A373464 a(10) = 1249 is the first term not in A299171, a(15) = 3023 is the first term not in A293194, a(17) = 4079 is the first term not in A347977 and also the first term not in A374482, and a(21) = 7127 is the first term not in A184856. %H A373464 Chai Wah Wu, <a href="/A373464/b373464.txt">Table of n, a(n) for n = 1..2372</a> %H A373464 Doddy Kastanya, <a href="https://www.linkedin.com/feed/update/urn:li:activity:7214455399565938688">Fun Math #241</a>, Number Theory group on LinkedIn.com, Jul 04 2024 %e A373464 The terms of the sequence are column "p[4]" in the following table which lists the sequences of primes, and ratios of the geometric progression (p[k]+1): %e A373464 n | p[1], p[2], p[3], p[4] | r = (p[k+1]+1) / (p[k]+1) %e A373464 ------+-------------------------+--------------------------- %e A373464 1 | 2, 5, 11, 23 | 2 = 6/3 = 12/6 = 24/12 %e A373464 2 | 5, 11, 23, 47 | 2 = 12/6 = 24/12 = 48/24 %e A373464 3 | 31, 47, 71, 107 | 3/2 = 48/32 = 72/48 = 108/72 %e A373464 4 | 2, 11, 47, 191 | 4 = 12/3 = 48/12 = 192/48 %e A373464 5 | 31, 79, 199, 499 | 5/2 = 80/32 = 200/80 = 500/200 %e A373464 6 | 2, 17, 107, 647 | 6 = 18/3 = 108/18 = 648/108 %e A373464 7 | 89, 179, 359, 719 | 2 = 180/90 = ... %e A373464 8 | 29, 89, 269, 809 | 3 = 90/30 = ... %e A373464 9 | 499, 599, 719, 863 | 6/5 = 600/500 = ... %e A373464 10 | 79, 199, 499, 1249 | 5/2 = 200/80 = ... %e A373464 11 | 179, 359, 719, 1439 | 2 = 360/180 = ... %e A373464 12 | 53, 179, 599, 1999 | 10/3 = 180/54 = ... %o A373464 (PARI) A373464_upto(N, show=0, D = 1, LIM=N\2) = { my(L=List()); forprime(p=1, LIM, my(denom = p+D); for(numer=denom+1, sqrtnint((N+D) * denom^2, 3), my(r=numer/denom); for(k=1,3, (type(denom * r^k)=="t_INT" && isprime(denom * r^k - D)) || next(2)); listput(L, denom * r^3 - D); show && printf(" | %4d, %4d, %4d, %4d | %s\n",denom-D, denom*r-D, denom*r^2-D, denom*r^3-D, numer/denom))); vecsort(L)} %o A373464 (Python) %o A373464 from itertools import islice %o A373464 from fractions import Fraction %o A373464 from sympy import nextprime %o A373464 def A373464_gen(): # generator of terms %o A373464 p, plist, pset = 1, [], set() %o A373464 while True: %o A373464 p = nextprime(p) %o A373464 for q in plist: %o A373464 r = Fraction(q+1,p+1) %o A373464 q2 = r*(q+1)-1 %o A373464 if q2 < 2: %o A373464 break %o A373464 if q2.denominator == 1: %o A373464 q2 = int(q2) %o A373464 if q2 in pset: %o A373464 q3 = r*(q2+1)-1 %o A373464 if q3 < 2: %o A373464 break %o A373464 if q3.denominator == 1 and int(q3) in pset: %o A373464 yield p %o A373464 plist = [p]+plist %o A373464 pset.add(p) %o A373464 A373464_list = list(islice(A373464_gen(),20)) # _Chai Wah Wu_, Jul 16 2024 %Y A373464 Subsequence of A089199 (primes p such that p+1 is divisible by a cube). %K A373464 nonn %O A373464 1,1 %A A373464 _M. F. Hasler_, Jul 12 2024 %E A373464 a(26)-a(43) from _Chai Wah Wu_, Jul 16 2024