This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373468 #13 Jun 23 2024 11:26:31 %S A373468 257,2113,2657,7489,10177,15073,18593,23041,25121,25409,25537,25793, %T A373468 27809,30881,30977,32321,37409,38273,41729,43649,51137,51361,54721, %U A373468 59809,63841,67073,67489,75553,77569,83009,86561,92641,94049,94433,95713,101281,102241 %N A373468 Primes such that x^16 = 2 has a solution in Z/pZ, but x^32 = 2 does not. %e A373468 For p = 257, the equation x^16 = 2 has solutions 27, 41, 54, ... in Z/pZ, but x^32 can only be 0, +-1, +-4, +-16, +-64 (mod p). %o A373468 (PARI) select( {is_A373468(p)=Mod(2,p)^(p\gcd(16,p-1))==1&&Mod(2,p)^(p\gcd(32,p-1))!=1}, primes(19999)) %o A373468 (Python) %o A373468 from itertools import islice %o A373468 from sympy import nextprime, is_nthpow_residue %o A373468 def A373468_gen(startvalue=2): # generator of terms >= startvalue %o A373468 p = max(1,startvalue-1) %o A373468 while (p:=nextprime(p)): %o A373468 if is_nthpow_residue(2,16,p) and not is_nthpow_residue(2,32,p): %o A373468 yield p %o A373468 A373468_list = list(islice(A373468_gen(),10)) # _Chai Wah Wu_, Jun 23 2024 %Y A373468 Cf. A059287 (similar for x^8 vs x^16). %Y A373468 Subsequence of A070184 which is a subsequence of A252279. %K A373468 nonn %O A373468 1,1 %A A373468 _M. F. Hasler_, Jun 22 2024