This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373495 #32 Jul 14 2025 14:31:36 %S A373495 2,9,5,7,1,7,7,9,7,9,1,3,1,3,3,7,9,1,7,1,7,9,7,9,7,1,3,3,9,3,7,1,3,9, %T A373495 9,1,3,3,3,7,9,1,1,7,7,9,1,7,3,9,3,9,1,1,3,3,9,1,3,1,3,7,7,1,7,7,1,3, %U A373495 7,9,3,9,3,7,9,7,9,7,1,9,9,1,1,7,9,7,9,7,1,3,3,9,3,1,9,7,9,1,3,1,7,3,3,9,1 %N A373495 a(1) = 2; thereafter, a(n) = prime(n)^prime(n-1) (mod 10). %C A373495 This sequence is not periodic. %D A373495 Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing, Redwood City, CA, 1991, p. 226-229. %H A373495 Paolo Xausa, <a href="/A373495/b373495.txt">Table of n, a(n) for n = 1..10000</a> %H A373495 Robert P. Munafo, <a href="https://mrob.com/pub/perl/hypercalc.html">Hypercalc - The Calculator That Doesn't Overflow</a>. %H A373495 Robert P. Munafo, <a href="https://mrob.com/pub/seq/a092188.html">Sequence A092188, Smallest Positive Integer M such that 2^3^4^5^...^N = M mod N</a>. %H A373495 Robert G. Wilson v, <a href="/A133612/a133612_2.txt">Mathematica coding for "SuperPowerMod" from Vardi</a>. %H A373495 Wolfram cloud Function Repository, <a href="https://resources.wolframcloud.com/FunctionRepository/resources/PowerTowerMod">PowerTowerMod</a>. %F A373495 a(n) = A078422(n-1) mod 10. - _R. J. Mathar_, Jul 14 2025 %e A373495 a(2) = 3^2 (mod 10) = 9. %e A373495 a(3) = 5^3 (mod 10) = 5. %t A373495 a[n_] := Switch[ Mod[ Prime[n], 10], 1, 1, 3, If[ Mod[ Prime[n -1], 4] == 1, 3, 7], 5, 5, 7, If[ Mod[ Prime[n -1], 4] == 1, 7, 3], 9, 9]; a[1] = 2; a[2] = 9; Array[a, 105] %t A373495 Join[{2}, Map[PowerMod[#[[2]], #[[1]], 10] &, Partition[Prime[Range[100]], 2, 1]]] (* _Paolo Xausa_, Jul 14 2025 *) %o A373495 (PARI) a(n) = if(n<2, 2, lift(Mod(prime(n),10)^prime(n-1))) \\ _Hugo Pfoertner_, Jul 07 2024 %Y A373495 Cf. A000040, A092188, A133612, A171881, A171882, A213013, A336111, A342176. %K A373495 nonn %O A373495 1,1 %A A373495 _Robert G. Wilson v_, Jun 06 2024