A373502 Size of a complete set of classical projective planes of prime power order q using a given set of q^2+q+1 points.
30, 1108800, 422378820864000, 22104404984349254886359040000, 7197507570101063450093594584788274920397007398780859842560000000000000, 90399509839271079668491458784005740889517921781547218950513473999637402251071324160000000000000000
Offset: 1
Keywords
Examples
For the Fano plane (q=2) there are 7 points and 7 lines. Of the 7!=5040 permutations of the points 168 fix the set of lines and thereby the whole plane. Consequently, there are 5040/168=30 different such planes for any given set of points. See A373501 for a more elaborate discussion of this example.
References
- A. Beutelspacher and U. Rosenbaum, Projective Geometry: From Foundations to Applications, Cambridge University Press, 1998, pages 118-132.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..12
- IBM Research, Possible Dobble decks, Ponder This Challenge May 2024, asked for a(3) and a(6).
- Wikipedia, Order of PGL(3,q) and PGammaL(3,q).
Crossrefs
Programs
-
Mathematica
Map[(#^2+#-1)!/(PrimeOmega[#]*(#-1)^2*#^2) &, Select[Range[10], PrimePowerQ]] (* Paolo Xausa, Aug 01 2024 *)
-
PARI
a=(q)->(q^2+q+1)!/(bigomega(q)*(q^3-1)*(q^3-q)*(q^3-q^2)/(q-1)) \\ q=A246655(n)
Formula
a(n) = (q^2+q+1)!/(Omega(q)*(q^3-1)*(q^3-q)*(q^3-q^2)/(q-1)) where q = A246655(n).
Comments