This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373504 #37 Aug 11 2024 14:17:36 %S A373504 1,1,1,1,4,4,1,9,24,16,1,16,80,128,64,1,25,200,560,640,256,1,36,420, %T A373504 1792,3456,3072,1024,1,49,784,4704,13440,19712,14336,4096,1,64,1344, %U A373504 10752,42240,90112,106496,65536,16384,1,81,2160,22176,114048,329472,559104,552960,294912,65536 %N A373504 Triangular array: row n gives the coefficients T(n,k) of powers x^(2k) in the series expansion of ((b^n + b^(-n))/2)^2, where b = x + sqrt(x^2 + 1). %C A373504 Related to Chebyshev polynomials of the first kind; see A123588. %F A373504 T(n, k) = if (k=0) then 1, otherwise 4^(k - 1)*(2*binomial(n + k, 2*k) - binomial(n + k - 1, 2*k - 1)). - _Detlef Meya_, Aug 11 2024 %e A373504 First 8 rows: %e A373504 1 %e A373504 1 1 %e A373504 1 4 4 %e A373504 1 9 24 16 %e A373504 1 16 80 128 64 %e A373504 1 25 200 560 640 256 %e A373504 1 36 420 1792 3456 3072 1024 %e A373504 1 49 784 4704 13440 19612 14336 4096 %e A373504 The 4th polynomial is 1 + 9 x^2 + 24 x^4 + 16 x^6. %p A373504 p:= proc(n) option remember; (b-> series( %p A373504 ((b^n+b^(-n))/2)^2, x, 2*n+1))(x+sqrt(x^2+1)) %p A373504 end: %p A373504 T:= (n, k)-> coeff(p(n), x, 2*k): %p A373504 seq(seq(T(n,k), k=0..n), n=0..10); # _Alois P. Heinz_, Aug 03 2024 %t A373504 t[n_] := ((x + Sqrt[x^2 + 1])^n + (x + Sqrt[x^2 + 1])^(-n))/2 %t A373504 u = Expand[Table[FullSimplify[Expand[t[n]]], {n, 0, 10}]^2] %t A373504 v = Column[CoefficientList[u, x^2]] (* array *) %t A373504 Flatten[v] (* sequence *) %t A373504 T[n_, k_] := If[k==0, 1, 4^(k - 1)*(2*Binomial[n + k, 2*k] - Binomial[n + k -1, 2*k -1])]; Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* _Detlef Meya_, Aug 11 2024 *) %Y A373504 Cf. A000012 (col 0), A000290 (col 1), A002415 ((1/4)*col(2)), A112742 (col 2), A000302 (T(n,n)), A123588, A008310. %Y A373504 Row sums give A055997(n+1). %Y A373504 Triangle without column 0 gives A334009. %K A373504 nonn,tabl %O A373504 0,5 %A A373504 _Clark Kimberling_, Aug 03 2024