A373515 Numbers k, divisible by 2 but not by 4, such that rad(k) is primorial.
2, 6, 18, 30, 54, 90, 150, 162, 210, 270, 450, 486, 630, 750, 810, 1050, 1350, 1458, 1470, 1890, 2250, 2310, 2430, 3150, 3750, 4050, 4374, 4410, 5250, 5670, 6750, 6930, 7290, 7350, 9450, 10290, 11250, 11550, 12150, 13122, 13230, 15750, 16170, 17010, 18750, 20250
Offset: 1
Keywords
Examples
6 is a term because 2|6 but 4!|6 and rad(6) = 6 = A002110(2) is a primorial number. A primorial number m > 1 is a term since m is squarefree and == 2 (mod 4).
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[2, 25000, 4], Or[# == {2}, Union@ Differences@ PrimePi[#] == {1}] &@ FactorInteger[#][[All, 1]] &] (* Michael De Vlieger, Jun 08 2024 *)
-
PARI
lista(kmax) = {my(f); forstep(k = 2, kmax, 4, f = factor(k); if(primepi(f[#f~, 1]) == #f~, print1(k, ", ")));} \\ Amiram Eldar, Jun 08 2024
Comments