cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373527 Odd numbers k such that k and k+2 both have at least two divisors with the same value of the Euler totient function (A000010).

This page as a plain text file.
%I A373527 #8 Jun 08 2024 15:45:05
%S A373527 2107,11275,42651,68733,90153,99123,123633,213003,226825,242305,
%T A373527 262143,272853,292873,295405,308007,313443,376675,376803,378693,
%U A373527 390115,427425,471293,473263,524797,525481,556983,579535,591325,618469,638163,663325,669123,699853,731815
%N A373527 Odd numbers k such that k and k+2 both have at least two divisors with the same value of the Euler totient function (A000010).
%C A373527 Numbers k such that k and k+2 are both in A359563.
%H A373527 Amiram Eldar, <a href="/A373527/b373527.txt">Table of n, a(n) for n = 1..10000</a>
%t A373527 q[n_] := q[n] = UnsameQ @@ EulerPhi[Divisors[n]]; Select[Range[1, 10^6, 2], ! q[#] && ! q[# + 2] &]
%o A373527 (PARI) is(k) = k>1 && k%2 && numdiv(k) > #Set(apply(x->eulerphi(x), divisors(k)));
%o A373527 lista(kmax) = {my(q1 = 0, q2); forstep(k = 3, kmax, 2, q2 = is(k); if(q1 && q2, print1(k-2, ", ")); q1 = q2);}
%Y A373527 Subsequence of A359563.
%Y A373527 A373528 is a subsequence.
%Y A373527 Cf. A000010, A102190.
%K A373527 nonn
%O A373527 1,1
%A A373527 _Amiram Eldar_, Jun 08 2024