cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373528 Odd numbers k such that k, k+2 and k+4 all have at least two divisors with the same value of the Euler totient function (A000010).

This page as a plain text file.
%I A373528 #7 Jun 08 2024 15:44:49
%S A373528 4142435,26196331,77118741,89690821,102974571,196054673,201060275,
%T A373528 206568171,277322153,280039833,401784953,402492695,415097613,
%U A373528 437290371,515636303,526721895,534746581,549806211,575090395,580329603,625833871,629588043,702183625,710983971,716133481
%N A373528 Odd numbers k such that k, k+2 and k+4 all have at least two divisors with the same value of the Euler totient function (A000010).
%C A373528 Numbers k such that k, k+2 and k+4 are all in A359563.
%H A373528 Amiram Eldar, <a href="/A373528/b373528.txt">Table of n, a(n) for n = 1..100</a>
%t A373528 q[n_] := !UnsameQ @@ EulerPhi[Divisors[n]]; seq[kmax_] := Module[{tri = q /@ {1, 3, 5}, s = {}, k = 7}, While[k < kmax, If[And @@ tri, AppendTo[s, k - 6]]; tri = Join[Rest[tri], {q[k]}]; k+=2]; s]; seq[3*10^7]
%o A373528 (PARI) is(k) = k>1 && k%2 && numdiv(k) > #Set(apply(x->eulerphi(x), divisors(k)));
%o A373528 lista(kmax) = {my(q1 = 0, q2 = 0, q3); forstep(k = 5, kmax, 2, q3 = is(k); if(q1 && q2 && q3, print1(k-4, ", ")); q1 = q2; q2 = q3);}
%Y A373528 Subsequence of A359563 and A373527.
%Y A373528 Cf. A000010, A102190.
%K A373528 nonn
%O A373528 1,1
%A A373528 _Amiram Eldar_, Jun 08 2024