cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373529 Numbers k such that k and k+1 both have at least three divisors with the same value of the Euler totient function (A000010).

This page as a plain text file.
%I A373529 #8 Jun 08 2024 15:44:58
%S A373529 32319,111320,175959,179360,191919,212120,246519,254079,254960,279279,
%T A373529 319599,355508,357399,398600,436149,463239,512000,520064,524799,
%U A373529 542240,580040,606879,657152,678699,685880,701631,718640,726920,739556,750519,759759,775775,787815
%N A373529 Numbers k such that k and k+1 both have at least three divisors with the same value of the Euler totient function (A000010).
%C A373529 Numbers k such that k and k+1 are both in A359565.
%H A373529 Amiram Eldar, <a href="/A373529/b373529.txt">Table of n, a(n) for n = 1..10000</a>
%t A373529 q[n_] := q[n] = Max[Tally[EulerPhi[Divisors[n]]][[;; , 2]]] > 2; Select[Range[3*10^6], q[#] && q[# + 1] &]
%o A373529 (PARI) is(k) = vecmax(matreduce(apply(x->eulerphi(x), divisors(k)))[,2]) > 2;
%o A373529 lista(kmax) = {my(q1 = 0, q2); for(k = 2, kmax, q2 = is(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}
%Y A373529 Subsequence of A359565.
%Y A373529 A373530 is a subsequence.
%Y A373529 Cf. A000010, A102190.
%K A373529 nonn
%O A373529 1,1
%A A373529 _Amiram Eldar_, Jun 08 2024