This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373532 #12 Jun 10 2024 15:00:22 %S A373532 1,2,12,120,240,3276,2520,10920,21840,32760,65520,622440,600600, %T A373532 900900,3636360,1801800,3603600,4455360,22407840,8910720,17821440, %U A373532 51351300,46060560,69090840,92121120,126977760,138181680,380933280,245044800,414545040,490089600,507911040 %N A373532 a(n) is the least number k such that A373531(k) = n, or -1 if no such k exists. %F A373532 a(n) >= A061799(n). %t A373532 f[n_] := Max[Tally[EulerPhi[Divisors[n]]][[;; , 2]]]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n]; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[12, 10^6] %o A373532 (PARI) f(n) = vecmax(matreduce(apply(x->eulerphi(x), divisors(n)))[ , 2]); %o A373532 lista(nmax, kmax = oo) = {my(v = vector(nmax), k = 1, c = 0, i); while(c < nmax && k < kmax, i = f(k); if(i <= nmax && v[i] == 0, c++; v[i] = k); k++); v} %o A373532 (Python) %o A373532 from collections import Counter %o A373532 from itertools import count, islice %o A373532 from sympy import divisors, totient %o A373532 def agen(): # generator of terms %o A373532 adict, n = dict(), 1 %o A373532 for k in count(1): %o A373532 divs = divisors(k) %o A373532 if len(divs) < n: %o A373532 continue %o A373532 c = Counter(totient(d) for d in divs) %o A373532 v = c.most_common(1)[0][1] %o A373532 if v not in adict: %o A373532 adict[v] = k %o A373532 while n in adict: %o A373532 yield adict[n] %o A373532 n += 1 %o A373532 print(list(islice(agen(), 11))) # _Michael S. Branicky_, Jun 08 2024 %Y A373532 Cf. A061799, A328857, A373531. %K A373532 nonn %O A373532 1,2 %A A373532 _Amiram Eldar_, Jun 08 2024