This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373551 #10 Jun 14 2024 11:54:16 %S A373551 1,3,95,15,47,483,5045,6347,266447,1085919,144939,54133739,3348547, %T A373551 1156672145,952689827,3639059747,49394809937,5496502370531, %U A373551 8029157726715 %N A373551 a(n) is the least start of a run of exactly n successive squarefree numbers (A005117) that are odd, or -1 if no such run exists. %e A373551 a(1) = 1, since 1 is the least squarefree number, it is odd, and it is followed by an even squarefree number, 2. %e A373551 a(2) = 3, since 3 and 5 are two successive squarefree numbers that are odd, preceded by an even squarefree number, 2, and followed by an even squarefree number, 6. %e A373551 The first 7 terms and the corresponding sets of successive squarefree numbers are: %e A373551 n | a(n) | The n successive squarefree numbers %e A373551 --|--------|----------------------------------------- %e A373551 1 | 1 | 1 %e A373551 2 | 3 | 3, 5 %e A373551 3 | 95 | 95, 97, 101 %e A373551 4 | 15 | 15, 17, 19, 21 %e A373551 5 | 47 | 47, 51, 53, 55, 57 %e A373551 6 | 483 | 483, 485, 487, 489, 491, 493 %e A373551 7 | 5045 | 5045, 5051, 5053, 5055, 5057, 5059, 5061 %t A373551 seq[lim_] := Module[{sqf = Select[Range[lim], SquareFreeQ], s = {}, rem, ind}, rem = Join[{0}, Mod[sqf, 2]]; Do[ind = SequencePosition[rem, Join[{0}, Table[1, {k}], {0}], 1]; If[ind == {}, Break[]]; AppendTo[s, sqf[[ind[[1, 1]]]]], {k, 1, Infinity}]; s]; seq[10^7] %o A373551 (PARI) lista(len, kmax = oo) = {my(v = vector(len), c = 0, k = 1, k0, i = 0); while(c < len && k < kmax, if(issquarefree(k), if(k % 2, i++; if(i == 1, k0 = k), if(i > 0 && i <= len && v[i] == 0, v[i] = k0; c++); i = 0)); k++); v;} %Y A373551 Cf. A005117, A039956, A056911, A363192, A373550, A373552. %K A373551 nonn,hard,more %O A373551 1,2 %A A373551 _Amiram Eldar_, Jun 09 2024 %E A373551 a(17)-a(19) from _Bert Dobbelaere_, Jun 14 2024