This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373557 #18 Jun 25 2024 05:24:58 %S A373557 2,3,4,4,3,5,5,3,5,4,6,6,3,6,4,6,5,6,5,4,7,7,3,7,4,7,5,7,5,4,7,6,7,6, %T A373557 4,7,6,5,8,8,3,8,4,8,5,8,5,4,8,6,8,6,4,8,6,5,8,7,8,7,4,8,7,5,8,7,6,8, %U A373557 7,6,5,9,9,3,9,4,9,5,9,5,4,9,6,9,6,4,9,6,5 %N A373557 Irregular triangle read by rows where row n lists (in decreasing order) the elements of the strong Schreier set encoded by A371176(2*n). %C A373557 A strong Schreier set is a subset of the positive integers with cardinality less than the minimum element in the set (see Chu link). %C A373557 Each term k of 2*A371176 can be put into a one-to-one correspondence with a strong Schreier set by interpreting the 1-based position of the ones in the binary expansion of k (where position 1 corresponds to the least significant bit) as the elements of the corresponding strong Schreier set. %C A373557 Arranging the elements in each set in decreasing order results in the sets being listed in lexicographical order (see example). Cf. A373579 for the elements arranged in increasing order. %C A373557 The number of sets having maximum element m is A000045(m-1). %H A373557 Paolo Xausa, <a href="/A373557/b373557.txt">Table of n, a(n) for n = 1..10000</a> (rows 1..2261 of the triangle, flattened). %H A373557 Alistair Bird, <a href="https://outofthenormmaths.wordpress.com/2012/05/13/jozef-schreier-schreier-sets-and-the-fibonacci-sequence/">Jozef Schreier, Schreier sets and the Fibonacci sequence</a>, Out Of The Norm blog, May 13 2012. %H A373557 Hùng Việt Chu, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Chu2/chu9.pdf">The Fibonacci Sequence and Schreier-Zeckendorf Sets</a>, Journal of Integer Sequences, Vol. 22 (2019), Article 19.6.5. %F A373557 T(n,k) = A373345(n,k) + 1. %e A373557 Triangle begins: %e A373557 Corresponding %e A373557 n A371176(2*n) bin(A371176(2*n)) strong Schreier set %e A373557 (this sequence) %e A373557 --------------------------------------------------------- %e A373557 1 2 10 {2} %e A373557 2 4 100 {3} %e A373557 3 8 1000 {4} %e A373557 4 12 1100 {4, 3} %e A373557 5 16 10000 {5} Sets are %e A373557 6 20 10100 {5, 3} lexicographically %e A373557 7 24 11000 {5, 4} ordered %e A373557 8 32 100000 {6} %e A373557 9 36 100100 {6, 3} %e A373557 10 40 101000 {6, 4} %e A373557 11 48 110000 {6, 5} %e A373557 12 56 111000 {6, 5, 4} %e A373557 ... %t A373557 Join[{{2}}, Map[Reverse[PositionIndex[Reverse[IntegerDigits[#, 2]]][1]] &, Select[Range[4, 400, 4], DigitCount[#, 2, 1] < IntegerExponent[#, 2] + 1 &]]] %Y A373557 Subsequence of A373345. %Y A373557 Cf. A000045, A007895 (conjectured row lengths), A371176, A373556, A373579, A373853 (row sums). %K A373557 nonn,tabf,base,easy %O A373557 1,1 %A A373557 _Paolo Xausa_, Jun 09 2024