This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373558 #19 Jun 25 2024 17:07:35 %S A373558 1,2,3,2,4,2,5,3,4,5,2,6,3,4,6,3,5,6,2,7,3,4,7,3,5,7,3,6,7,4,5,6,7,2, %T A373558 8,3,4,8,3,5,8,3,6,8,4,5,6,8,3,7,8,4,5,7,8,4,6,7,8,2,9,3,4,9,3,5,9,3, %U A373558 6,9,4,5,6,9,3,7,9,4,5,7,9,4,6,7,9,3,8,9 %N A373558 Irregular triangle read by rows: T(1,1) = 1 and, for n >= 2, row n lists (in increasing order) the elements of the maximal Schreier set encoded by 2*A355489(n-1). %C A373558 See A373556 (where elements in each set are listed in decreasing order) for more information. %H A373558 Paolo Xausa, <a href="/A373558/b373558.txt">Table of n, a(n) for n = 1..10003</a> (rows 1..1892 of the triangle, flattend). %H A373558 Alistair Bird, <a href="https://outofthenormmaths.wordpress.com/2012/05/13/jozef-schreier-schreier-sets-and-the-fibonacci-sequence/">Jozef Schreier, Schreier sets and the Fibonacci sequence</a>, Out Of The Norm blog, May 13 2012. %H A373558 Hùng Việt Chu, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Chu2/chu9.pdf">The Fibonacci Sequence and Schreier-Zeckendorf Sets</a>, Journal of Integer Sequences, Vol. 22 (2019), Article 19.6.5. %e A373558 Triangle begins: %e A373558 Corresponding %e A373558 n 2*A355489(n-1) bin(2*A355489(n-1)) maximal Schreier set %e A373558 (this sequence) %e A373558 --------------------------------------------------------------- %e A373558 1 {1} %e A373558 2 6 110 {2, 3} %e A373558 3 10 1010 {2, 4} %e A373558 4 18 10010 {2, 5} %e A373558 5 28 11100 {3, 4, 4} %e A373558 6 34 100010 {2, 6} %e A373558 7 44 101100 {3, 4, 6} %e A373558 8 52 110100 {3, 5, 6} %e A373558 9 66 1000010 {2, 7} %e A373558 10 76 1001100 {3, 4, 7} %e A373558 11 84 1010100 {3, 5, 7} %e A373558 12 100 1100100 {3, 6, 7} %e A373558 13 120 1111000 {4, 5, 6, 7} %e A373558 ... %t A373558 Join[{{1}}, Map[PositionIndex[Reverse[IntegerDigits[#, 2]]][1] &, Select[Range[2, 500, 2], DigitCount[#, 2, 1] == IntegerExponent[#, 2] + 1 &]]] %Y A373558 Subsequence of A373359. %Y A373558 Cf. A143299 (conjectured row lengths), A355489, A373556, A373579, A373854 (row sums). %K A373558 nonn,tabf,base,easy %O A373558 1,2 %A A373558 _Paolo Xausa_, Jun 10 2024