This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373570 #3 Jun 16 2024 04:46:50 %S A373570 1,0,1,0,1,2,1,0,2,11,15,7,1,0,6,77,193,194,88,17,1,0,24,674,2919, %T A373570 4844,3895,1646,361,36,1,0,120,7114,52083,131898,162398,110214,43356, %U A373570 9902,1242,72,1,0,720,88164,1070824,4036059,7141903,7007314,4133290,1519960,350176,49162,3886,141,1 %N A373570 Triangle read by rows: Coefficients of the polynomials S1(n, x) * EP(n, x), where S1 denote the unsigned Stirling cycle polynomials A132393 and EP the Eulerian polynomials A173018. %e A373570 Triangle starts: %e A373570 [0] [1] %e A373570 [1] [0, 1] %e A373570 [2] [0, 1, 2, 1] %e A373570 [3] [0, 2, 11, 15, 7, 1] %e A373570 [4] [0, 6, 77, 193, 194, 88, 17, 1] %e A373570 [5] [0, 24, 674, 2919, 4844, 3895, 1646, 361, 36, 1] %p A373570 PolyProd(((n, k) -> abs(Stirling1(n, k))), combinat:-eulerian1, 7); # Using PolyProd from A373657. %Y A373570 Cf. A173018, A132393, A000142, A373657, A001044 (row sums). %K A373570 nonn,tabf %O A373570 0,6 %A A373570 _Peter Luschny_, Jun 16 2024