cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373572 Triangle read by rows: Coefficients of the polynomials P(n, x) * EZ(n, x), where P denote the signed Pascal polynomials and EZ the Eulerian zig-zag polynomials A205497.

This page as a plain text file.
%I A373572 #6 Jun 16 2024 04:47:06
%S A373572 1,-1,1,1,-2,1,-1,2,0,-2,1,1,-1,-5,10,-5,-1,1,-1,-2,18,-26,0,26,-18,2,
%T A373572 1,1,8,-38,18,117,-212,117,18,-38,8,1,-1,-19,52,143,-677,818,0,-818,
%U A373572 677,-143,-52,19,1,1,38,-6,-817,2196,-722,-5071,8762,-5071,-722,2196,-817,-6,38,1
%N A373572 Triangle read by rows: Coefficients of the polynomials P(n, x) * EZ(n, x), where P denote the signed Pascal polynomials and EZ the Eulerian zig-zag polynomials A205497.
%e A373572 Triangle starts:
%e A373572   [0] [1]
%e A373572   [1] [-1,   1]
%e A373572   [2] [ 1,  -2,   1]
%e A373572   [3] [-1,   2,   0,  -2,    1]
%e A373572   [4] [ 1,  -1,  -5,  10,   -5,   -1,   1]
%e A373572   [5] [-1,  -2,  18, -26,    0,   26, -18,    2,   1]
%e A373572   [6] [ 1,   8, -38,  18,  117, -212, 117,   18, -38,    8,   1]
%e A373572   [7] [-1, -19,  52, 143, -677,  818,   0, -818, 677, -143, -52, 19, 1]
%p A373572 EZP((n, k) -> (-1)^(n-k)*binomial(n, k), 8);  # Using function EZP from A373432.
%Y A373572 Cf. A373432, A205497, A373657, A000007 (row sums).
%K A373572 sign,tabf
%O A373572 0,5
%A A373572 _Peter Luschny_, Jun 15 2024