This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373573 #6 Jun 11 2024 09:36:44 %S A373573 6,1,18,8,4,2,10,52,678 %N A373573 Least k such that the k-th maximal antirun of nonsquarefree numbers has length n. Position of first appearance of n in A373409. %C A373573 The sorted version is A373574. %C A373573 An antirun of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by more than one. %C A373573 Is this sequence finite? Are there only 9 terms? %H A373573 Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a> %e A373573 The maximal antiruns of nonsquarefree numbers begin: %e A373573 4 8 %e A373573 9 12 16 18 20 24 %e A373573 25 27 %e A373573 28 32 36 40 44 %e A373573 45 48 %e A373573 49 %e A373573 50 52 54 56 60 63 %e A373573 64 68 72 75 %e A373573 76 80 %e A373573 81 84 88 90 92 96 98 %e A373573 99 %e A373573 The a(n)-th rows are: %e A373573 49 %e A373573 4 8 %e A373573 148 150 152 %e A373573 64 68 72 75 %e A373573 28 32 36 40 44 %e A373573 9 12 16 18 20 24 %e A373573 81 84 88 90 92 96 98 %e A373573 477 480 484 486 488 490 492 495 %e A373573 6345 6348 6350 6352 6354 6356 6358 6360 6363 %t A373573 t=Length/@Split[Select[Range[10000],!SquareFreeQ[#]&],#1+1!=#2&]//Most; %t A373573 spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[t,Range[#1]]&]; %t A373573 Table[Position[t,k][[1,1]],{k,spna[t]}] %Y A373573 For composite runs we have A073051, firsts of A176246, sorted A373400. %Y A373573 For squarefree runs we have the triple (5,3,1), firsts of A120992. %Y A373573 For prime runs we have the triple (1,3,2), firsts of A175632. %Y A373573 For squarefree antiruns we have A373128, firsts of A373127, sorted A373200. %Y A373573 For nonsquarefree runs we have A373199 (assuming sorted), firsts of A053797. %Y A373573 For prime antiruns we have A373401, firsts of A027833, sorted A373402. %Y A373573 For composite antiruns we have the triple (2,7,1), firsts of A373403. %Y A373573 Positions of first appearances in A373409. %Y A373573 The sorted version is A373574. %Y A373573 A005117 lists the squarefree numbers, first differences A076259. %Y A373573 A013929 lists the nonsquarefree numbers, first differences A078147. %Y A373573 Cf. A007674, A025157, A049094, A061399, A068781, A072284, A110969, A251092, A294242, A373410, A373412. %K A373573 nonn %O A373573 1,1 %A A373573 _Gus Wiseman_, Jun 10 2024