This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373574 #5 Jun 11 2024 09:36:39 %S A373574 1,2,4,6,8,10,18,52,678 %N A373574 Numbers k such that the k-th maximal antirun of nonsquarefree numbers has length different from all prior maximal antiruns. Sorted positions of first appearances in A373409. %C A373574 The unsorted version is A373573. %C A373574 An antirun of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by more than one. %C A373574 Is this sequence finite? Are there only 9 terms? %H A373574 Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a>. %e A373574 The maximal antiruns of nonsquarefree numbers begin: %e A373574 4 8 %e A373574 9 12 16 18 20 24 %e A373574 25 27 %e A373574 28 32 36 40 44 %e A373574 45 48 %e A373574 49 %e A373574 50 52 54 56 60 63 %e A373574 64 68 72 75 %e A373574 76 80 %e A373574 81 84 88 90 92 96 98 %e A373574 99 %e A373574 The a(n)-th rows are: %e A373574 4 8 %e A373574 9 12 16 18 20 24 %e A373574 28 32 36 40 44 %e A373574 49 %e A373574 64 68 72 75 %e A373574 81 84 88 90 92 96 98 %e A373574 148 150 152 %e A373574 477 480 484 486 488 490 492 495 %e A373574 6345 6348 6350 6352 6354 6356 6358 6360 6363 %t A373574 t=Length/@Split[Select[Range[100000],!SquareFreeQ[#]&],#1+1!=#2&]; %t A373574 Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&] %Y A373574 For squarefree runs we have the triple (1,3,5), firsts of A120992. %Y A373574 For prime runs we have the triple (1,2,3), firsts of A175632. %Y A373574 For nonsquarefree runs we have A373199 (assuming sorted), firsts of A053797. %Y A373574 For squarefree antiruns: A373200, firsts of A373127, unsorted A373128. %Y A373574 For composite runs we have A373400, firsts of A176246, unsorted A073051. %Y A373574 For prime antiruns we have A373402, firsts of A027833, unsorted A373401. %Y A373574 For composite antiruns we have the triple (1,2,7), firsts of A373403. %Y A373574 Sorted positions of first appearances in A373409. %Y A373574 The unsorted version is A373573. %Y A373574 A005117 lists the squarefree numbers, first differences A076259. %Y A373574 A013929 lists the nonsquarefree numbers, first differences A078147. %Y A373574 Cf. A007674, A025157, A049094, A061399, A068781, A072284, A077643, A110969, A251092, A294242, A373410, A373412. %K A373574 nonn,more %O A373574 1,2 %A A373574 _Gus Wiseman_, Jun 10 2024