This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373575 #16 Feb 23 2025 12:53:45 %S A373575 1,15,21,22,34,35,36,39,40,45,46,51,52,55,56,57,58,63,66,69,70,75,76, %T A373575 77,78,85,86,87,88,91,92,93,94,95,96,99,100,105,106,111,112,115,116, %U A373575 117,118,119,120,123,124,130,133,134,135,136,141,142,143,144,145 %N A373575 Numbers k such that k and k-1 both have at least two distinct prime factors. First element of the n-th maximal antirun of non-prime-powers. %C A373575 The last element of the same antirun is given by A255346. %C A373575 An antirun of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by more than one. %H A373575 Harvey P. Dale, <a href="/A373575/b373575.txt">Table of n, a(n) for n = 1..1000</a> %e A373575 The maximal antiruns of non-prime-powers begin: %e A373575 1 6 10 12 14 %e A373575 15 18 20 %e A373575 21 %e A373575 22 24 26 28 30 33 %e A373575 34 %e A373575 35 %e A373575 36 38 %e A373575 39 %e A373575 40 42 44 %e A373575 45 %e A373575 46 48 50 %t A373575 Select[Range[100],!PrimePowerQ[#]&&!PrimePowerQ[#-1]&] %t A373575 Join[{1},SequencePosition[Table[If[PrimeNu[n]>1,1,0],{n,150}],{1,1}][[;;,2]]] (* _Harvey P. Dale_, Feb 23 2025 *) %Y A373575 Runs of prime-powers: %Y A373575 - length A174965 %Y A373575 - min A373673 %Y A373575 - max A373674 %Y A373575 - sum A373675 %Y A373575 Runs of non-prime-powers: %Y A373575 - length A110969 %Y A373575 - min A373676 %Y A373575 - max A373677 %Y A373575 - sum A373678 %Y A373575 Antiruns of prime-powers: %Y A373575 - length A373671 %Y A373575 - min A120430 %Y A373575 - max A006549 %Y A373575 - sum A373576 %Y A373575 Antiruns of non-prime-powers: %Y A373575 - length A373672 %Y A373575 - min A373575 (this sequence) %Y A373575 - max A255346 %Y A373575 - sum A373679 %Y A373575 A000961 lists all powers of primes. A246655 lists just prime-powers. %Y A373575 A057820 gives first differences of consecutive prime-powers, gaps A093555. %Y A373575 A356068 counts non-prime-powers up to n. %Y A373575 A361102 lists all non-prime-powers (A024619 if not including 1). %Y A373575 Various run-lengths: A053797, A120992, A175632, A176246. %Y A373575 Various antirun-lengths: A027833, A373127, A373403, A373409. %Y A373575 Cf. A001359, A008864, A014963, A067774, A251092, A373669, A373670. %K A373575 nonn %O A373575 1,2 %A A373575 _Gus Wiseman_, Jun 18 2024