This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373578 #20 Jun 11 2024 08:09:45 %S A373578 1,1,1,13,49,241,2401,13021,128353,1346689,10615681,140431501, %T A373578 1544877841,17576665393,264566466529,3226728670621,48376006929601, %U A373578 766753039205761,11052669865900033,197019825098096269,3271213100827557361,56597110823949654001 %N A373578 Expansion of e.g.f. exp(x * (1 + x^2)^2). %H A373578 Vaclav Kotesovec, <a href="/A373578/b373578.txt">Table of n, a(n) for n = 0..500</a> %F A373578 a(n) = n! * Sum_{k=0..floor(2*n/5)} binomial(2*n-4*k,k)/(n-2*k)!. %F A373578 a(n) == 1 (mod 12). %F A373578 a(n) = a(n-1) + 6*(n-1)*(n-2)*a(n-3) + 5*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5). %F A373578 a(n) ~ 5^(n/5 - 1/2) * exp(7*5^(-11/5)*n^(1/5) + 2*5^(-3/5)*n^(3/5) - 4*n/5) * n^(4*n/5). - _Vaclav Kotesovec_, Jun 11 2024 %t A373578 nmax = 20; CoefficientList[Series[E^(x*(1 + x^2)^2), {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Jun 11 2024 *) %o A373578 (PARI) a(n) = n!*sum(k=0, 2*n\5, binomial(2*n-4*k, k)/(n-2*k)!); %Y A373578 Cf. A118395, A190863, A373577. %Y A373578 Cf. A361278. %K A373578 nonn %O A373578 0,4 %A A373578 _Seiichi Manyama_, Jun 10 2024