This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373579 #13 Jun 25 2024 17:07:43 %S A373579 2,3,4,3,4,5,3,5,4,5,6,3,6,4,6,5,6,4,5,6,7,3,7,4,7,5,7,4,5,7,6,7,4,6, %T A373579 7,5,6,7,8,3,8,4,8,5,8,4,5,8,6,8,4,6,8,5,6,8,7,8,4,7,8,5,7,8,6,7,8,5, %U A373579 6,7,8,9,3,9,4,9,5,9,4,5,9,6,9,4,6,9,5,6,9 %N A373579 Irregular triangle read by rows where row n lists (in increasing order) the elements of the strong Schreier set encoded by A371176(2*n). %C A373579 See A373557 (where elements in each set are listed in decreasing order) for more information. %H A373579 Paolo Xausa, <a href="/A373579/b373579.txt">Table of n, a(n) for n = 1..10000</a> (rows 1..2261 of the triangle, flattened). %H A373579 Alistair Bird, <a href="https://outofthenormmaths.wordpress.com/2012/05/13/jozef-schreier-schreier-sets-and-the-fibonacci-sequence/">Jozef Schreier, Schreier sets and the Fibonacci sequence</a>, Out Of The Norm blog, May 13 2012. %H A373579 Hùng Việt Chu, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Chu2/chu9.pdf">The Fibonacci Sequence and Schreier-Zeckendorf Sets</a>, Journal of Integer Sequences, Vol. 22 (2019), Article 19.6.5. %F A373579 T(n,k) = A373359(n,k) + 1. %e A373579 Triangle begins: %e A373579 Corresponding %e A373579 n A371176(2*n) bin(A371176(2*n)) strong Schreier set %e A373579 (this sequence) %e A373579 --------------------------------------------------------- %e A373579 1 2 10 {2} %e A373579 2 4 100 {3} %e A373579 3 8 1000 {4} %e A373579 4 12 1100 {3, 4} %e A373579 5 16 10000 {5} %e A373579 6 20 10100 {3, 5} %e A373579 7 24 11000 {4, 5} %e A373579 8 32 100000 {6} %e A373579 9 36 100100 {3, 6} %e A373579 10 40 101000 {4, 6} %e A373579 11 48 110000 {5, 6} %e A373579 12 56 111000 {4, 5, 6} %e A373579 ... %t A373579 Join[{{2}}, Map[PositionIndex[Reverse[IntegerDigits[#, 2]]][1] &, Select[Range[4, 400, 4], DigitCount[#, 2, 1] < IntegerExponent[#, 2] + 1 &]]] %Y A373579 Subsequence of A373359. %Y A373579 Cf. A007895 (conjectured row lengths), A371176, A373557, A373558, A373853 (row sums). %K A373579 nonn,tabf,base,easy %O A373579 1,1 %A A373579 _Paolo Xausa_, Jun 10 2024