cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373619 Expansion of e.g.f. exp(x / (1 - x^2)^(3/2)).

This page as a plain text file.
%I A373619 #10 Jun 11 2024 07:46:42
%S A373619 1,1,1,10,37,316,2341,21736,237385,2611792,35911081,476570656,
%T A373619 7654975021,121021831360,2196593121997,40464132512896,817485662059921,
%U A373619 17159299818547456,382733978898335185,8982388245979044352,219867829220866999861,5684505550914409716736
%N A373619 Expansion of e.g.f. exp(x / (1 - x^2)^(3/2)).
%F A373619 a(n) = n! * Sum_{k=0..floor(n/2)} binomial(3*n/2-2*k-1,k)/(n-2*k)!.
%F A373619 a(n) == 1 mod 9.
%F A373619 a(n) ~ 3^(1/5) * 5^(-1/2) * exp(3^(-1/5)*n^(1/5)/4 + 5*3^(-3/5)*n^(3/5)/2 - n) * n^(n - 1/5) * (1 - 1/(10*3^(4/5)*n^(1/5))). - _Vaclav Kotesovec_, Jun 11 2024
%o A373619 (PARI) a(n) = n!*sum(k=0, n\2, binomial(3*n/2-2*k-1, k)/(n-2*k)!);
%Y A373619 Cf. A012150, A088009, A373620.
%Y A373619 Cf. A373577.
%K A373619 nonn
%O A373619 0,4
%A A373619 _Seiichi Manyama_, Jun 11 2024