A373626 Least prime of a run of n consecutive primes p_i, i = 1..n, such that bigomega(p_i + 1) = omega(p_i + 1) + i and bigomega(p_(n+1) + 1) <> omega(p_(n+1) + 1) + n + 1, or -1 if no such prime exists.
3, 19, 739, 76913, 4510333, 746264059, 290623032907
Offset: 1
Examples
19 starts a run of 2 consecutive primes 19 and 23, bigomega(19+1) = 2 = omega(19+1) + 1, bigomega(23+1) = 4 = omega(23+1) + 2 and bigomega(29+1) = 3 <> omega(29+1) + 3. So a(2) = 19. Let i, p, b and w be the indices, the primes p_i, bigomega(p_i + 1) and omega(p_i + 1). i: [ 1 2 3] p: [19 23 29] b: [ 3 4 3] w: [ 2 2 3] a(2) = 19 i: [ 1 2 3 4] p: [739 743 751 757] b: [ 4 5 5 2] w: [ 3 3 2 2] a(3) = 739