This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373632 #20 Feb 16 2025 08:34:06 %S A373632 1,0,1,1,2,4,8,17,41,103,282,792,2239,6680,21143,70647,245357,871255, %T A373632 3202552,12334046,49635128,205403510,856780528,3601169551,15507530896, %U A373632 69267381313,320345619798,1518428936730,7345400773513,36469929240960,186875135258481 %N A373632 Number of (binary) heaps where n is the sum of their length and the size of the element set [k]. %C A373632 These heaps may contain repeated elements. Their element sets are gap-free and contain 1 (if nonempty). %H A373632 Alois P. Heinz, <a href="/A373632/b373632.txt">Table of n, a(n) for n = 0..710</a> %H A373632 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Heap.html">Heap</a> %H A373632 Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_heap">Binary heap</a> %F A373632 a(n) = Sum_{j=0..floor(n/2)} A373451(n-j,j). %e A373632 a(0) = 1: the empty heap. %e A373632 a(2) = 1: 1. %e A373632 a(3) = 1: 11. %e A373632 a(4) = 2: 111, 21. %e A373632 a(5) = 4: 1111, 211, 212, 221. %e A373632 a(6) = 8: 11111, 2111, 2121, 2211, 2212, 2221, 312, 321. %e A373632 a(7) = 17: 111111, 21111, 21211, 22111, 22112, 22121, 22122, 22211, 22212, 22221, 3121, 3211, 3212, 3221, 3231, 3312, 3321. %e A373632 (The examples use max-heaps.) %p A373632 b:= proc(n, k) option remember; `if`(n=0, 1, %p A373632 (g-> (f-> add(b(f, j)*b(n-1-f, j), j=1..k) %p A373632 )(min(g-1, n-g/2)))(2^ilog2(n))) %p A373632 end: %p A373632 T:= (n, k)-> add(binomial(k, j)*(-1)^j*b(n, k-j), j=0..k): %p A373632 a:= n-> add(T(n-j, j), j=0..n/2): %p A373632 seq(a(n), n=0..30); %Y A373632 Antidiagonal sums of A373451. %K A373632 nonn %O A373632 0,5 %A A373632 _Alois P. Heinz_, Jun 11 2024