A373650 Integers k such that there are i groups of order k+i up to isomorphism, for i=1,2,3,4.
72, 20664, 66600, 84744, 89784, 141240, 175032, 232680, 271272, 288072, 378984, 428472, 620472, 697320, 740520, 789672, 792360, 1016472, 1063272, 1207704, 1250472, 1304472, 1338600, 1570584, 1617672, 1628472, 1844472, 2150712, 2186472, 2283672, 2399112, 2427672
Offset: 1
Keywords
Examples
72 is in this sequence as there is 1 group of order 73 up to isomorphism, 2 of order 74, 3 of order 75, 4 of order 76.
Links
- David Radcliffe, Table of n, a(n) for n = 1..6405 (terms 1..1418 and 1420..5512 from Robin Jones).
- Robin Jones, Graph of n, a(n) mod 5 for n = 1..783
- Robin Jones, Graph of n, a(n) mod 7 for n = 1..783
- Robin Jones, Graph of n, a(n) mod 11 for n = 1..783
Programs
-
Magma
for x in [1 .. 100000] do //get the terms up to 100000 if NumberOfSmallGroups(x+1) eq 1 then if NumberOfSmallGroups(x+2) eq 2 then if NumberOfSmallGroups(x+3) eq 3 then if NumberOfSmallGroups(x+4) eq 4 then x; end if; end if; end if; end if; end for; // Robin Jones, Apr 18 2025
Comments