This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373662 #28 Jun 24 2024 19:28:16 %S A373662 2,5,9,12,20,23,35,38,54,57,77,80,104,107,135,138,170,173,209,212,252, %T A373662 255,299,302,350,353,405,408,464,467,527,530,594,597,665,668,740,743, %U A373662 819,822,902,905,989,992,1080,1083,1175,1178,1274,1277,1377,1380,1484,1487,1595 %N A373662 a(n) = (1 + (n+1)^2 - (n-2)*(-1)^n)/2. %C A373662 Fill an array with the natural numbers n = 1,2,... along diagonals in alternating 'down' and 'up' directions. a(n) is row 2 of the boustrophedon-style array (see example). %C A373662 In general, row k is given by (1+t^2+(n-k)*(-1)^t)/2, t = n+k-1. Here, k=2. %H A373662 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1). %F A373662 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). %F A373662 a(n) = A131179(n+1) + (-1)^n. %F A373662 G.f.: -x*(2*x^4-3*x^3+3*x+2)/((x+1)^2*(x-1)^3). - _Alois P. Heinz_, Jun 12 2024 %e A373662 [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12] %e A373662 [ 1] 1 3 4 10 11 21 22 36 37 55 56 78 ... %e A373662 [ 2] 2 5 9 12 20 23 35 38 54 57 77 ... %e A373662 [ 3] 6 8 13 19 24 34 39 53 58 76 ... %e A373662 [ 4] 7 14 18 25 33 40 52 59 75 ... %e A373662 [ 5] 15 17 26 32 41 51 60 74 ... %e A373662 [ 6] 16 27 31 42 50 61 73 ... %e A373662 [ 7] 28 30 43 49 62 72 ... %e A373662 [ 8] 29 44 48 63 71 ... %e A373662 [ 9] 45 47 64 70 ... %e A373662 [10] 46 65 69 ... %e A373662 [11] 66 68 ... %e A373662 [12] 67 ... %e A373662 ... %t A373662 k := 2; Table[(1 + (n+k-1)^2 + (n-k) (-1)^(n+k-1))/2, {n, 80}] %o A373662 (Magma) [(1 + (n+1)^2 - (n-2)*(-1)^n)/2: n in [1..80]]; %o A373662 (Python) %o A373662 def A373662(n): return ((n+1)*(n+2)-1 if n&1 else n*(n+1)+5)>>1 # _Chai Wah Wu_, Jun 23 2024 %Y A373662 For rows k = 1..10: A131179 (k=1) n>0, this sequence (k=2), A373663 (k=3), A374004 (k=4), A374005 (k=5), A374007 (k=6), A374008 (k=7), A374009 (k=8), A374010 (k=9), A374011 (k=10). %Y A373662 Cf. A001844, A038722. %Y A373662 Row n=2 of A056011. %Y A373662 Column k=2 of A056023. %K A373662 nonn,easy %O A373662 1,1 %A A373662 _Wesley Ivan Hurt_, Jun 12 2024