This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373663 #27 Jun 24 2024 19:43:31 %S A373663 6,8,13,19,24,34,39,53,58,76,81,103,108,134,139,169,174,208,213,251, %T A373663 256,298,303,349,354,404,409,463,468,526,531,593,598,664,669,739,744, %U A373663 818,823,901,906,988,993,1079,1084,1174,1179,1273,1278,1376,1381,1483,1488,1594 %N A373663 a(n) = (1 + (n+2)^2 + (n-3)*(-1)^n)/2. %C A373663 Fill an array with the natural numbers n = 1,2,... along diagonals in alternating 'down' and 'up' directions. a(n) is row 3 of the boustrophedon-style array (see example). %C A373663 In general, row k is given by (1+t^2+(n-k)*(-1)^t)/2, t = n+k-1. Here, k=3. %H A373663 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1). %F A373663 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). %F A373663 a(n) = A373662(n+1) - (-1)^n. %F A373663 G.f.: -x*(x^4+2*x^3-7*x^2+2*x+6)/((x+1)^2*(x-1)^3). %e A373663 [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12] %e A373663 [ 1] 1 3 4 10 11 21 22 36 37 55 56 78 ... %e A373663 [ 2] 2 5 9 12 20 23 35 38 54 57 77 ... %e A373663 [ 3] 6 8 13 19 24 34 39 53 58 76 ... %e A373663 [ 4] 7 14 18 25 33 40 52 59 75 ... %e A373663 [ 5] 15 17 26 32 41 51 60 74 ... %e A373663 [ 6] 16 27 31 42 50 61 73 ... %e A373663 [ 7] 28 30 43 49 62 72 ... %e A373663 [ 8] 29 44 48 63 71 ... %e A373663 [ 9] 45 47 64 70 ... %e A373663 [10] 46 65 69 ... %e A373663 [11] 66 68 ... %e A373663 [12] 67 ... %e A373663 ... %t A373663 k := 3; Table[(1 + (n+k-1)^2 + (n-k) (-1)^(n+k-1))/2, {n, 80}] %o A373663 (Magma) [(1 + (n+2)^2 + (n-3)*(-1)^n)/2: n in [1..80]]; %o A373663 (Python) %o A373663 def A373663(n): return ((n+1)*(n+2)+6 if n&1 else (n+2)*(n+3)-4)>>1 # _Chai Wah Wu_, Jun 23 2024 %Y A373663 For rows k = 1..10: A131179 (k=1) n>0, A373662 (k=2), this sequence (k=3), A374004 (k=4), A374005 (k=5), A374007 (k=6), A374008 (k=7), A374009 (k=8), A374010 (k=9), A374011 (k=10). %Y A373663 Row 3 of the example in A056011, Column 3 of the rectangular array in A056023. %K A373663 nonn,easy %O A373663 1,1 %A A373663 _Wesley Ivan Hurt_, Jun 12 2024