A373666 Smallest positive integer whose square can be written as the sum of n positive perfect squares whose square roots differ by no more than 1.
1, 5, 3, 2, 5, 3, 4, 10, 3, 4, 7, 6, 4, 9, 6, 4, 25, 6, 5, 10, 6, 5, 16, 6, 5, 12, 6, 7, 11, 6, 7, 20, 6, 7, 15, 6, 7, 31, 9, 7, 13, 9, 7, 14, 9, 7, 36, 9, 7, 15, 9, 8, 22, 9, 8, 17, 9, 8, 16, 9, 8, 49, 9, 8, 20, 9, 10, 50, 9, 10, 17, 9, 10, 19, 9, 10, 28, 9
Offset: 1
Keywords
Examples
a(1) = 1 because 1^2 = 1^2. a(2) = 5 because 5^2 = 3^2 + 4^2. a(3) = 3 because 3^2 = 1^2 + 2*(2^2). a(4) = 2 because 2^2 = 4*(1^2). a(5) = 5 because 5^2 = 4*(2^2) + 3^2. a(6) = 3 because 3^2 = 5*(1^2) + 2^2. a(7) = 4 because 4^2 = 4*(1^2) + 3*(2^2).
Links
- Charles L. Hohn, Table of n, a(n) for n = 1..10000
Programs
-
PARI
a(n) = my(d=ceil(sqrt(n))); while(true, my(b=sqrtint(floor(d^2/n))); if ((d^2-b^2*n)%(b*2+1)==0, return(d), d++)) \\ Charles L. Hohn, Jul 02 2024
-
PARI
a366973(n) = {for(i=2, oo, my(p=prime(i)); for(j=0, (p-1)/2, if(n%p==j^2%p, return(p))))} bstep(np, p) = {my(t=np+if(np%2, p)); while(!issquare(t), t+=p*2); sqrtint(t)/2} a(n) = my(p=a366973(n), b=sqrtint(n*((p-1)/2)^2-1)+1, bp=b%p, s=bstep(n%p, p)); b-bp+if(bp<=s, s, bp<=p-s, p-s, p+s) \\ Charles L. Hohn, Sep 27 2024
Formula
a(n) = min(d) such that d^2 - n*b^2 == 0 (mod 2*b + 1) and d >= ceiling(sqrt(n)) where b = floor(sqrt(d^2/n)).
Comments