This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373670 #6 Jun 15 2024 22:50:29 %S A373670 1,5,7,12,18,28,40,53,71,109,170,190,198,207,236,303,394,457,606,774, %T A373670 1069,1100,1225,1881,1930,1952,2247,2281,3140,3368,3451,3493,3713, %U A373670 3862,4595,4685,6625,8063,8121,8783,12359,12650,14471,14979,15901,17129,19155 %N A373670 Numbers k such that the k-th run-length A110969(k) of the sequence of non-prime-powers (A024619) is different from all prior run-lengths. %C A373670 The unsorted version is A373669. %e A373670 The maximal runs of non-prime-powers begin: %e A373670 1 %e A373670 6 %e A373670 10 %e A373670 12 %e A373670 14 15 %e A373670 18 %e A373670 20 21 22 %e A373670 24 %e A373670 26 %e A373670 28 %e A373670 30 %e A373670 33 34 35 36 %e A373670 38 39 40 %e A373670 42 %e A373670 44 45 46 %e A373670 48 %e A373670 50 51 52 %e A373670 54 55 56 57 58 %e A373670 60 %e A373670 So the a(n)-th runs begin: %e A373670 1 %e A373670 14 15 %e A373670 20 21 22 %e A373670 33 34 35 36 %e A373670 54 55 56 57 58 %t A373670 t=Length/@Split[Select[Range[10000],!PrimePowerQ[#]&],#1+1==#2&]; %t A373670 Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&] %Y A373670 For nonsquarefree runs we have A373199 (if increasing), firsts of A053797. %Y A373670 For squarefree antiruns see A373200, unsorted A373128, firsts of A373127. %Y A373670 For composite runs we have A373400, unsorted A073051, firsts of A176246. %Y A373670 For prime antiruns we have A373402. %Y A373670 For runs of non-prime-powers: %Y A373670 - length A110969, firsts A373669, sorted A373670 (this sequence): %Y A373670 - min A373676 %Y A373670 - max A373677 %Y A373670 - sum A373678 %Y A373670 For runs of prime-powers: %Y A373670 - length A174965 %Y A373670 - min A373673 %Y A373670 - max A373674 %Y A373670 - sum A373675 %Y A373670 A000961 lists the powers of primes (including 1). %Y A373670 A057820 gives first differences of consecutive prime-powers, gaps A093555. %Y A373670 A361102 lists the non-prime-powers, without 1 A024619. %Y A373670 Cf. A005381, A008864, A014963, A027833, A038664, A356068, A373401, A373574. %K A373670 nonn %O A373670 1,2 %A A373670 _Gus Wiseman_, Jun 15 2024