cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373672 Length of the n-th maximal antirun of non-prime-powers.

This page as a plain text file.
%I A373672 #12 Jun 20 2024 16:58:22
%S A373672 5,3,1,6,1,1,2,1,3,1,3,1,2,1,1,1,3,2,2,1,3,1,1,1,4,1,1,1,2,1,1,1,1,1,
%T A373672 2,1,3,1,3,1,2,1,1,1,1,1,2,1,3,2,1,1,1,3,1,1,1,1,1,1,1,3,1,1,1,2,1,1,
%U A373672 1,2,1,3,1,2,1,1,1,3,1,1,1,1,1,1,1,3,1
%N A373672 Length of the n-th maximal antirun of non-prime-powers.
%C A373672 An antirun of a sequence (in this case A361102 or A024619 with 1) is an interval of positions at which consecutive terms differ by more than one.
%H A373672 Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a>.
%F A373672 Partial sums are A356068(A255346(n)).
%e A373672 The maximal antiruns of non-prime-powers begin:
%e A373672    1   6  10  12  14
%e A373672   15  18  20
%e A373672   21
%e A373672   22  24  26  28  30  33
%e A373672   34
%e A373672   35
%e A373672   36  38
%e A373672   39
%e A373672   40  42  44
%e A373672   45
%e A373672   46  48  50
%t A373672 Length/@Split[Select[Range[100],!PrimePowerQ[#]&],#1+1!=#2&]//Most
%Y A373672 For prime antiruns we have A027833.
%Y A373672 For nonsquarefree runs we have A053797, firsts A373199.
%Y A373672 For non-prime-powers runs we have A110969, firsts A373669, sorted A373670.
%Y A373672 For squarefree runs we have A120992.
%Y A373672 For prime-power runs we have A174965.
%Y A373672 For prime runs we have A175632.
%Y A373672 For composite runs we have A176246, firsts A073051, sorted A373400.
%Y A373672 For squarefree antiruns we have A373127, firsts A373128.
%Y A373672 For composite antiruns we have A373403.
%Y A373672 For antiruns of prime-powers:
%Y A373672 - length A373671
%Y A373672 - min A120430
%Y A373672 - max A006549
%Y A373672 For antiruns of non-prime-powers:
%Y A373672 - length A373672 (this sequence), firsts (3,7,2,25,1,4)
%Y A373672 - min A373575
%Y A373672 - max A255346
%Y A373672 A000961 lists all powers of primes. A246655 lists just prime-powers.
%Y A373672 A057820 gives first differences of consecutive prime-powers, gaps A093555.
%Y A373672 A356068 counts non-prime-powers up to n.
%Y A373672 A361102 lists all non-prime-powers (A024619 if not including 1).
%Y A373672 Cf. A001359, A008864, A014963, A038664, A054265, A067774, A251092, A373401.
%K A373672 nonn
%O A373672 1,1
%A A373672 _Gus Wiseman_, Jun 14 2024