This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373673 #9 Jun 17 2024 08:51:43 %S A373673 1,7,11,13,16,19,23,25,27,29,31,37,41,43,47,49,53,59,61,64,67,71,73, %T A373673 79,81,83,89,97,101,103,107,109,113,121,125,127,131,137,139,149,151, %U A373673 157,163,167,169,173,179,181,191,193,197,199,211,223,227,229,233,239 %N A373673 First element of each maximal run of powers of primes (including 1). %C A373673 A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one. %C A373673 The last element of the same run is A373674. %C A373673 Consists of all powers of primes k such that k-1 is not a power of primes. %H A373673 Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a>. %e A373673 The maximal runs of powers of primes begin: %e A373673 1 2 3 4 5 %e A373673 7 8 9 %e A373673 11 %e A373673 13 %e A373673 16 17 %e A373673 19 %e A373673 23 %e A373673 25 %e A373673 27 %e A373673 29 %e A373673 31 32 %e A373673 37 %e A373673 41 %e A373673 43 %e A373673 47 %e A373673 49 %t A373673 pripow[n_]:=n==1||PrimePowerQ[n]; %t A373673 Min/@Split[Select[Range[100],pripow],#1+1==#2&]//Most %Y A373673 For composite antiruns we have A005381, max A068780, length A373403. %Y A373673 For prime antiruns we have A006512, max A001359, length A027833. %Y A373673 For composite runs we have A008864, max A006093, length A176246. %Y A373673 For prime runs we have A025584, max A067774, length A251092 or A175632. %Y A373673 For runs of prime-powers: %Y A373673 - length A174965 %Y A373673 - min A373673 (this sequence) %Y A373673 - max A373674 %Y A373673 - sum A373675 %Y A373673 For runs of non-prime-powers: %Y A373673 - length A110969 (firsts A373669, sorted A373670) %Y A373673 - min A373676 %Y A373673 - max A373677 %Y A373673 - sum A373678 %Y A373673 For antiruns of prime-powers: %Y A373673 - length A373671 %Y A373673 - min A120430 %Y A373673 - max A006549 %Y A373673 - sum A373576 %Y A373673 For antiruns of non-prime-powers: %Y A373673 - length A373672 %Y A373673 - min A373575 %Y A373673 - max A255346 %Y A373673 - sum A373679 %Y A373673 A000961 lists all powers of primes (A246655 if not including 1). %Y A373673 A025528 counts prime-powers up to n. %Y A373673 A057820 gives first differences of consecutive prime-powers, gaps A093555. %Y A373673 A361102 lists all non-prime-powers (A024619 if not including 1). %Y A373673 Cf. A000040, A007674, A014963, A053806, A054265, A068781, A072284, A073051, A120992, A373400. %K A373673 nonn %O A373673 1,2 %A A373673 _Gus Wiseman_, Jun 15 2024