This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373675 #7 Jun 16 2024 15:23:10 %S A373675 15,24,11,13,33,19,23,25,27,29,63,37,41,43,47,49,53,59,61,64,67,71,73, %T A373675 79,81,83,89,97,101,103,107,109,113,121,125,255,131,137,139,149,151, %U A373675 157,163,167,169,173,179,181,191,193,197,199,211,223,227,229,233,239 %N A373675 Sums of maximal runs of powers of primes A000961. %C A373675 A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one. %H A373675 Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a>. %e A373675 The maximal runs of powers of primes begin: %e A373675 1 2 3 4 5 %e A373675 7 8 9 %e A373675 11 %e A373675 13 %e A373675 16 17 %e A373675 19 %e A373675 23 %e A373675 25 %e A373675 27 %e A373675 29 %e A373675 31 32 %e A373675 37 %e A373675 41 %e A373675 43 %e A373675 47 %e A373675 49 %t A373675 pripow[n_]:=n==1||PrimePowerQ[n]; %t A373675 Total/@Split[Select[Range[nn],pripow],#1+1==#2&]//Most %Y A373675 A000040 lists the primes, differences A001223. %Y A373675 A000961 lists all powers of primes (A246655 if not including 1). %Y A373675 A025528 counts prime-powers up to n. %Y A373675 A057820 gives first differences of consecutive prime-powers, gaps A093555. %Y A373675 A361102 lists all non-prime-powers (A024619 if not including 1). %Y A373675 See link for composite, prime, nonsquarefree, and squarefree runs. %Y A373675 Prime-power runs: A373675, min A373673, max A373674, length A174965. %Y A373675 Non-prime-power runs: A373678, min A373676, max A373677, length A110969. %Y A373675 Prime-power antiruns: A373576, min A120430, max A006549, length A373671. %Y A373675 Non-prime-power antiruns: A373679, min A373575, max A255346, length A373672. %Y A373675 Cf. A005117, A014963, A029707, A038664, A046933, A054265, A065855, A071148, A293697, A371201. %K A373675 nonn %O A373675 1,1 %A A373675 _Gus Wiseman_, Jun 16 2024