This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373676 #9 Jun 17 2024 14:48:43 %S A373676 1,6,10,12,14,18,20,24,26,28,30,33,38,42,44,48,50,54,60,62,65,68,72, %T A373676 74,80,82,84,90,98,102,104,108,110,114,122,126,129,132,138,140,150, %U A373676 152,158,164,168,170,174,180,182,192,194,198,200,212,224,228,230,234 %N A373676 First element of each maximal run of non-prime-powers. %C A373676 We consider 1 to be a power of a prime and a non-prime-power, but not a prime-power. %C A373676 A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one. %C A373676 The last element of the same run is A373677. %C A373676 Consists of 1 and all non-prime-powers k such that k-1 is a power of a prime. %H A373676 Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a>. %e A373676 The maximal runs of non-prime-powers begin: %e A373676 1 %e A373676 6 %e A373676 10 %e A373676 12 %e A373676 14 15 %e A373676 18 %e A373676 20 21 22 %e A373676 24 %e A373676 26 %e A373676 28 %e A373676 30 %e A373676 33 34 35 36 %e A373676 38 39 40 %e A373676 42 %e A373676 44 45 46 %e A373676 48 %e A373676 50 51 52 %e A373676 54 55 56 57 58 %e A373676 60 %t A373676 Select[Range[100],#==1||!PrimePowerQ[#]&&PrimePowerQ[#-1]&] %Y A373676 See link for prime, composite, squarefree, and nonsquarefree runs/antiruns. %Y A373676 For runs of powers of primes: %Y A373676 - length A174965 %Y A373676 - min A373673 %Y A373676 - max A373674 %Y A373676 - sum A373675 %Y A373676 For runs of non-prime-powers: %Y A373676 - length A110969 (firsts A373669, sorted A373670) %Y A373676 - min A373676 (this sequence) %Y A373676 - max A373677 %Y A373676 - sum A373678 %Y A373676 For antiruns of prime-powers: %Y A373676 - length A373671 %Y A373676 - min A120430 %Y A373676 - max A006549 %Y A373676 - sum A373576 %Y A373676 For antiruns of non-prime-powers: %Y A373676 - length A373672 %Y A373676 - min A373575 %Y A373676 - max A255346 %Y A373676 - sum A373679 %Y A373676 A000961 lists all powers of primes. A246655 is just prime-powers so lacks 1. %Y A373676 A025528 counts prime-powers up to n. %Y A373676 A057820 gives first differences of consecutive prime-powers, gaps A093555. %Y A373676 A361102 lists all non-prime-powers (A024619 if not including 1). %Y A373676 Cf. A000040, A007674, A014963, A038664, A053806, A054265, A068781, A072284, A073051, A373400. %K A373676 nonn %O A373676 1,2 %A A373676 _Gus Wiseman_, Jun 16 2024