This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373677 #8 Jun 17 2024 14:48:39 %S A373677 1,6,10,12,15,18,22,24,26,28,30,36,40,42,46,48,52,58,60,63,66,70,72, %T A373677 78,80,82,88,96,100,102,106,108,112,120,124,126,130,136,138,148,150, %U A373677 156,162,166,168,172,178,180,190,192,196,198,210,222,226,228,232,238 %N A373677 Last element of each maximal run of non-prime-powers. %C A373677 We consider 1 to be a power of a prime and a non-prime-power, but not a prime-power. %C A373677 A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one. %C A373677 The first element of the same run is A373676. %C A373677 Consists of all non-prime-powers k such that k+1 is a prime-power. %H A373677 Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a>. %e A373677 The maximal runs of non-prime-powers begin: %e A373677 1 %e A373677 6 %e A373677 10 %e A373677 12 %e A373677 14 15 %e A373677 18 %e A373677 20 21 22 %e A373677 24 %e A373677 26 %e A373677 28 %e A373677 30 %e A373677 33 34 35 36 %e A373677 38 39 40 %e A373677 42 %e A373677 44 45 46 %e A373677 48 %e A373677 50 51 52 %e A373677 54 55 56 57 58 %e A373677 60 %t A373677 Select[Range[100],!PrimePowerQ[#]&&PrimePowerQ[#+1]&] %Y A373677 See link for prime, composite, squarefree, and nonsquarefree runs/antiruns. %Y A373677 For runs of powers of primes: %Y A373677 - length A174965 %Y A373677 - min A373673 %Y A373677 - max A373674 %Y A373677 - sum A373675 %Y A373677 For runs of non-prime-powers: %Y A373677 - length A110969 (firsts A373669, sorted A373670) %Y A373677 - min A373676 %Y A373677 - max A373677 (this sequence) %Y A373677 - sum A373678 %Y A373677 For antiruns of prime-powers: %Y A373677 - length A373671 %Y A373677 - min A120430 %Y A373677 - max A006549 %Y A373677 - sum A373576 %Y A373677 For antiruns of non-prime-powers: %Y A373677 - length A373672 %Y A373677 - min A373575 %Y A373677 - max A255346 %Y A373677 - sum A373679 %Y A373677 A000961 lists all powers of primes. A246655 is just prime-powers so lacks 1. %Y A373677 A025528 counts prime-powers up to n. %Y A373677 A057820 gives first differences of consecutive prime-powers, gaps A093555. %Y A373677 A361102 lists all non-prime-powers (A024619 if not including 1). %Y A373677 Cf. A000040, A005381, A007674, A014963, A038664, A068780, A068781, A073051, A373400, A373401. %K A373677 nonn %O A373677 1,2 %A A373677 _Gus Wiseman_, Jun 16 2024