cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373679 Sums of maximal antiruns of non-prime-powers.

Original entry on oeis.org

43, 53, 21, 163, 34, 35, 74, 39, 126, 45, 144, 51, 106, 55, 56, 57, 180, 128, 134, 69, 216, 75, 76, 77, 324, 85, 86, 87, 178, 91, 92, 93, 94, 95, 194, 99, 306, 105, 324, 111, 226, 115, 116, 117, 118, 119, 242, 123, 379, 262, 133, 134, 135, 414, 141, 142, 143
Offset: 1

Views

Author

Gus Wiseman, Jun 17 2024

Keywords

Comments

An antirun of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of non-prime-powers begin:
   1   6  10  12  14
  15  18  20
  21
  22  24  26  28  30  33
  34
  35
  36  38
  39
  40  42  44
  45
  46  48  50
  51
  52  54
  55
  56
  57
  58  60  62
  63  65
		

Crossrefs

See link for composite, prime, nonsquarefree, and squarefree runs/antiruns.
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Non-prime-power runs: A373678, min A373676, max A373677, length A110969.
Prime-power antiruns: A373576, min A120430, max A006549, length A373671.
Non-prime-power antiruns: A373679 (this sequence), min A373575, max A255346, length A373672.
A000040 lists the primes, differences A001223.
A000961 lists all powers of primes. A246655 lists just prime-powers.
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A356068 counts non-prime-powers up to n.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    Total/@Split[Select[Range[100],!PrimePowerQ[#]&],#1+1!=#2&]//Most