This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373691 #35 Jun 14 2024 12:15:46 %S A373691 1,2,0,4,2,0,10,6,6,2,26,22,48,22,2,76,68,276,260,40,0,232,214,1384, %T A373691 2204,944,62,0,764,672,6240,16172,13212,3048,200,12,2620,2204,27096, %U A373691 103588,145160,70740,10936,524,12,9496,7354,113722,612178,1338370,1145614,364366,36838,862,0 %N A373691 Triangle read by rows T(n, k) is the number of permutations on n elements whose square has k descents, for n >= 1 and 0 <= k <= n-1. %H A373691 Kassie Archer and Aaron Geary, <a href="https://arxiv.org/abs/2406.09369">Descents in powers of permutations</a>, arXiv:2406.09369 [math.CO], 2024. See Table 5 p. 13. %e A373691 Triangle begins: %e A373691 1; %e A373691 2, 0; %e A373691 4, 2, 0; %e A373691 10, 6, 6, 2; %e A373691 26, 22, 48, 22, 2; %e A373691 76, 68, 276, 260, 40, 0; %e A373691 232, 214, 1384, 2204, 944, 62, 0; %e A373691 ... %o A373691 (PARI) sq(p) = vector(#p, k, p[p[k]]); %o A373691 nbd(p) = sum(i=1, #p-1, p[i+1] < p[i]); %o A373691 row(n) = my(v=vector(n)); for (i=1, n!, v[nbd(sq(numtoperm(n, i)))+1]++;); v; %Y A373691 Cf. A000085 (1st column), A000142 (row sums), A037224 (right diagonal). %Y A373691 Cf. A003483 (square permutations), A008292. %K A373691 nonn,tabl %O A373691 1,2 %A A373691 _Michel Marcus_, Jun 14 2024