This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373710 #12 Jul 07 2024 13:20:04 %S A373710 0,1,4,2,9,5,16,10,8,25,17,13,36,26,20,18,49,37,29,25,64,50,40,34,32, %T A373710 81,65,53,45,41,100,82,68,58,52,50,121,101,85,73,65,61,144,122,104,90, %U A373710 80,74,72,169,145,125,109,97,89,85,196,170,148,130,116,106,100,98 %N A373710 Triangle read by rows: T(n,k) is the area of the square whose vertices divide the sides n of a circumscribed square into integer sections k and n - k, 0 <= k <= floor(n/2). %C A373710 For a sketch see linked illustration "Square in square". %H A373710 Felix Huber, <a href="/A373710/b373710.txt">Table of n, a(n) for n = 0..100000</a> %H A373710 Felix Huber, <a href="/A373710/a373710.pdf">Square in square</a> %F A373710 T(n,k) = n^2 + 2*k^2 - 2*n*k, 0 <= k <= floor(n/2). %F A373710 Sequence of row n = r: a(i) = 2*i^2 - 4*i - 2*r*i + r^2 + 2*r + 2, 1 <= i <= floor(r/2 + 1). %F A373710 Sequence of column k = c: a(j) = j^2 - 2*j + 2*c*j + 2*c^2 - 2*c + 1, j >= 1. %e A373710 Triangle T(n,k) begins: %e A373710 n\k 0 1 2 3 4 5 6 7 ... %e A373710 0 0 %e A373710 1 1 %e A373710 2 4 2 %e A373710 3 9 5 %e A373710 4 16 10 8 %e A373710 5 25 17 13 %e A373710 6 36 26 20 18 %e A373710 7 49 37 29 25 %e A373710 8 64 50 40 34 32 %e A373710 9 81 65 53 45 41 %e A373710 10 100 82 68 58 52 50 %e A373710 11 121 101 85 73 65 61 %e A373710 12 144 122 104 90 80 74 72 %e A373710 13 169 145 125 109 97 89 85 %e A373710 14 196 170 148 130 116 106 100 98 %e A373710 ... %p A373710 A373710:=(n,k)->n^2+2*k^2-2*n*k; %p A373710 seq(seq(A373710(n,k),k=0..floor(n/2)),n=0..14); %Y A373710 Cf. A000290(first column), A005563 (second column), A048147 (rows: first half of each diagonal there), A087475 (third column), A189834 (fourth column), A241751 (fifth column). %K A373710 nonn,tabf,easy %O A373710 0,3 %A A373710 _Felix Huber_, Jun 17 2024