This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373716 #35 Jul 13 2024 17:55:10 %S A373716 0,0,1,2,5,7,12,15,19,23,32,36,47,53,60,66,81,88,105,113,123,133,154, %T A373716 162,176,188,201,212,239,249,278,291,307,323,341,352,387,405,424,438, %U A373716 477,492,533,551,570,592,637,652,681,701,726,747,798,818,847,867,895 %N A373716 a(n) is the number of distinct products i*j minus the number of distinct sums i+j with 1 <= i, j <= n. %F A373716 a(n) = A027424(n) - A005408(n-1). %F A373716 a(n) = (n-1)^2 - A062851(n). %e A373716 a(5) = 5 because: %e A373716 Products: Sums: %e A373716 * | 1 | 2 | 3 | 4 | 5 + | 1 | 2 | 3 | 4 | 5 %e A373716 ------------------------- ----------------------- %e A373716 1 | 1 | 2 | 3 | 4 | 5 1 | 2 | 3 | 4 | 5 | 6 %e A373716 2 | 2 | 4 | 6 | 8 | 10 2 | 3 | 4 | 5 | 6 | 7 %e A373716 3 | 3 | 6 | 9 | 12 | 15 3 | 4 | 5 | 6 | 7 | 8 %e A373716 4 | 4 | 8 | 12 | 16 | 20 4 | 5 | 6 | 7 | 8 | 9 %e A373716 5 | 5 | 10 | 15 | 20 | 25 5 | 6 | 7 | 8 | 9 | 10 %e A373716 The number of distinct products [1,2,3,4,5,6,8,9,10,12,15,16,20,25] is 14. %e A373716 The number of distinct sums [2,3,4,5,6,7,8,9,10] is 9. %e A373716 So a(5) = 14 - 9 = 5. %o A373716 (Python) %o A373716 A027424 = lambda n: len({i*j for i in range(1, n+1) for j in range(1, i+1)}) %o A373716 a = lambda n: A027424(n)-((n<<1)-1) %o A373716 print([a(n) for n in range(1, 58)]) %o A373716 (PARI) a(n) = #setbinop((x, y)->x*y, vector(n, i, i)) - 2*n + 1; \\ _Michel Marcus_, Jun 23 2024 %Y A373716 Cf. A000290, A005408, A027424, A062851. %K A373716 nonn %O A373716 1,4 %A A373716 _DarĂo Clavijo_, Jun 22 2024