This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373717 #15 Jun 15 2024 09:23:10 %S A373717 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,3,3,1,1,1,1,4,5,4,1,1,1,1,5,7,8, %T A373717 6,1,1,1,1,6,9,13,15,9,1,1,1,1,7,11,19,28,26,13,1,1,1,1,8,13,26,45,53, %U A373717 45,19,1,1,1,1,9,15,34,66,91,105,80,28,1,1,1,1,10,17,43,91,141,201,211,140,41,1 %N A373717 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..floor(k*n/(2*k+1))} binomial(k * (n-2*j),j). %F A373717 G.f. of column k: 1/(1 - x * (1 + x^2)^k). %F A373717 T(n,k) = Sum_{j=0..k} binomial(k,j) * T(n-2*j-1,k). %e A373717 Square array begins: %e A373717 1, 1, 1, 1, 1, 1, 1, ... %e A373717 1, 1, 1, 1, 1, 1, 1, ... %e A373717 1, 1, 1, 1, 1, 1, 1, ... %e A373717 1, 2, 3, 4, 5, 6, 7, ... %e A373717 1, 3, 5, 7, 9, 11, 13, ... %e A373717 1, 4, 8, 13, 19, 26, 34, ... %e A373717 1, 6, 15, 28, 45, 66, 91, ... %o A373717 (PARI) T(n, k) = sum(j=0, k*n\(2*k+1), binomial(k*(n-2*j), j)); %Y A373717 Columns k=0..3 give A000012, A000930, A193147, A373718. %Y A373717 Main diagonal gives A373719. %Y A373717 Cf. A099233. %K A373717 nonn,tabl %O A373717 0,14 %A A373717 _Seiichi Manyama_, Jun 15 2024