This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373728 #19 Jun 29 2024 10:48:13 %S A373728 2,4,8,12,17 %N A373728 a(n) is the length of a shortest integer sequence on a circle containing all permutations of the set {1, 2, ..., n} as subsequences. %C A373728 This is called r(n) in Lecouturier and Zmiaikou. %H A373728 Emmanuel Lecouturier and David Zmiaikou, <a href="https://doi.org/10.1016/j.disc.2011.12.027">On a conjecture of H. Gupta</a>, Discrete Math. 312, 8(2012), 1444-1452. %F A373728 a(n) <= n^2/2 if n is even. %F A373728 a(n) < n^2/2 + n/4 -1 if n is odd. %e A373728 From _Chai Wah Wu_, Jun 27 2024: (Start) %e A373728 Sequence corresponding to each n (which may not be unique): %e A373728 n = 2: 12 %e A373728 n = 3: 1232 %e A373728 n = 4: 12341214 %e A373728 n = 5: 123451215432 %e A373728 n = 6: 12345612156431265 %e A373728 (End) %o A373728 (Python) %o A373728 from itertools import count, permutations, product %o A373728 def is_subseq(s, p): %o A373728 while s != "" and p != "": %o A373728 if p[0] == s[0]: s = s[1:] %o A373728 p = p[1:] %o A373728 return s == "" %o A373728 def a(n): %o A373728 digits = "".join(str(i) for i in range(n)) %o A373728 for k in count(0): %o A373728 for p in product(digits, repeat=k): %o A373728 r, c_all = (digits + "".join(p))*2, True %o A373728 for q in permutations(digits): %o A373728 w = "".join(q) %o A373728 if not any(is_subseq(w, r[j:j+n+k]) for j in range(n+k)): %o A373728 c_all = False %o A373728 break %o A373728 if c_all: %o A373728 return n+k %o A373728 print([a(n) for n in range(2, 6)]) # _Michael S. Branicky_, Jun 17 2024 %Y A373728 Cf. A062714. %K A373728 nonn,hard,more %O A373728 2,1 %A A373728 _Michel Marcus_, Jun 15 2024