This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373731 #10 Jun 23 2024 22:04:19 %S A373731 15,26,39,49,58,115,122,123,129,143,155,158,159,169,177,178,183,185, %T A373731 187,203,205,226,265,289,314,319,326,327,329,335,339,355,394,398,415, %U A373731 437,497,538,559,586,589,629,667,718,899,1006,1011,1027,1041,1043,1046,1047,1057,1059,1067,1079,1115,1119 %N A373731 Semiprimes k such that the digit reversal of k is a semiprime > k. %H A373731 Robert Israel, <a href="/A373731/b373731.txt">Table of n, a(n) for n = 1..10000</a> %e A373731 a(3) = 39 is a term because 39 = 3*13 is a semiprime, its reversal 93 = 3*31 is a semiprime, and 93 > 39. %p A373731 rev:= proc(n) local L,i; %p A373731 L:= convert(n,base,10); %p A373731 add(L[-i]*10^(i-1),i=1..nops(L)) %p A373731 end proc: %p A373731 filter:= proc(n) local r; %p A373731 r:= rev(n); %p A373731 r > n and numtheory:-bigomega(n) = 2 and numtheory:-bigomega(r) = 2 %p A373731 end proc: %p A373731 select(filter, [$1..2000]); %t A373731 s = {}; Do[fd = FromDigits[Reverse[IntegerDigits[k]]]; If[{2, 2} ==PrimeOmega[{fd, k}] && fd > k, AppendTo[s, k]], {k, 1000}]; s %Y A373731 Cf. A001358, A004086, A050700, A097393. %K A373731 nonn,base %O A373731 1,1 %A A373731 _Zak Seidov_ and _Robert Israel_, Jun 17 2024