A373737 a(n) is the smallest number k in the sorted sequence S(q) = {k : rad(k) = q}, q = A120944(n), such that tau(k) - A008479(k) is not positive, where rad = A007947 and tau = A000005.
162, 250, 686, 1875, 7203, 2662, 4394, 750, 3993, 578, 12005, 722, 6591, 2058, 1058, 14739, 73205, 20577, 1682, 1922, 142805, 5346, 36501, 3430, 2738, 102487, 6318, 3362, 417605, 3698, 73167, 199927, 89373, 4418, 651605, 5202, 25725, 5618, 13310, 151959, 6498
Offset: 1
Examples
a(1) = 162 since the 12th term in S(6) = A033845 = {6, 12, 18, 24, 36, 48, 54, ..., 162, ...} is the smallest k = S(6, i) such that tau(S(6, i)) <= i: tau(162) = 10 while i = 12. a(2) = 250 since S(10, 9) = 250 gives tau(250) = 8, and 8 < 9. a(3) = 686 since S(14, 10) = 686 is such that A372720(686) <= 0, etc. Table of first and some notable terms: n q i a(n) a(n)/q A372720(a(n)) -------------------------------------------------------- 1 6 12 162 3^3 -2 2 10 9 250 5^2 -1 3 14 10 686 7^2 -2 4 15 11 1875 5^3 -1 5 21 13 7203 7^3 -3 6 22 12 2662 11^2 -4 7 26 13 4394 13^2 -5 8 30 16 750 5^2 0 82 210 51 26250 5^3 -11 1061 2310 99 635250 5^2 * 11 -3 15013 30030 222 25375350 5 * 13^2 -30 268015 510510 338 679488810 11^3 -18
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..268015 in blue, and A120944(n)^3 in red.
- Michael De Vlieger, Diagram of S(6) = A033845 arranged such that k appears vertically in order of magnitude, with smallest at the bottom. Color function relates to A372720(k), with positive values from largest in light yellow grading to A372720(k) = 1 in orange, and negative values with smallest absolute value in dark blue to greatest in light blue. a(1) = 162 appears at right.
- Michael De Vlieger, Diagram of S(30) = A143207 arranged such that k appears vertically in order of magnitude, with smallest at the bottom. Color function is as above, but with A372720(k) = 0 in red. a(2) = 750 appears at left in red.
Programs
-
Mathematica
(* First, load function f from A162306 *) Table[k = 1; s = f[n, n^3]; While[DivisorSigma[0, n*s[[k]]] - k > 0, k++]; s[[k]], {n, Select[Range[6, 120], And[SquareFreeQ[#], CompositeQ[#]] &]}]
Comments