This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373746 #5 Jun 17 2024 15:50:16 %S A373746 1,1,1,1,2,1,1,4,5,1,1,10,20,8,1,1,31,78,45,11,1,1,110,310,224,79,14, %T A373746 1,1,421,1264,1061,475,122,17,1,1,1686,5274,4922,2608,858,174,20,1,1, %U A373746 6961,22430,22648,13604,5356,1400,235,23,1,1,29392,96899,103978,68816,31072,9791,2128,305,26,1 %N A373746 Triangle read by rows: the almost-Riordan array ( 1/(1-x) | 2/((1-x)*(1+x+sqrt(5*x^2-6*x+1))), (1-3*x-sqrt(5*x^2-6*x+1))/(2x) ). %C A373746 In He and Słowik, there is a typing error since T(5,1) is equal to 31 and not to 421. %H A373746 Tian-Xiao He and Roksana Słowik, <a href="https://arxiv.org/abs/2406.03774">Total Positivity of Almost-Riordan Arrays</a>, arXiv:2406.03774 [math.CO], 2024. See p. 19. %F A373746 T(n,n-1) = A016789(n-2). %e A373746 The triangle begins as: %e A373746 1; %e A373746 1, 1; %e A373746 1, 2, 1; %e A373746 1, 4, 5, 1; %e A373746 1, 10, 20, 8, 1; %e A373746 1, 31, 78, 45, 11, 1; %e A373746 1, 110, 310, 224, 79, 14, 1; %e A373746 ... %t A373746 T[n_, 0]:=1; T[n_, k_]:=SeriesCoefficient[2/((1-x)(1+x+Sqrt[5x^2-6x+1]))((1-3x-Sqrt[5x^2-6x+1])/(2x))^(k-1), {x, 0, n-1}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten %Y A373746 Cf. A000012 (k=0 and n=k), A016789, A138415 (k=1). %K A373746 nonn,tabl %O A373746 0,5 %A A373746 _Stefano Spezia_, Jun 16 2024