This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373767 #24 Jun 20 2024 11:08:16 %S A373767 3,7,15,37,69,188,254,19274,20798,22380,26439,28219,30057,189067, %T A373767 279203,369162,1517727,1528134,2964593,3978491,4645227,4701433, %U A373767 4757977,4895880,4953578,5011614,5062958,7200291,20845013,51370845,101900477,135141272,246185759,358784011,646164289 %N A373767 Integers k such that the sum of the first k noncubes is a square. %H A373767 Chai Wah Wu, <a href="/A373767/b373767.txt">Table of n, a(n) for n = 1..64</a> %e A373767 The 3 first noncubes add up to 2+3+4=9, a square. So 3 is a term. %o A373767 (PARI) nc(n) = n + sqrtnint(n + sqrtnint(n, 3), 3); \\ A007412 %o A373767 snc(n) = sum(k=1, n, nc(k)); \\ A109470 %o A373767 isok(k) = issquare(snc(k)); %o A373767 (Python) %o A373767 from itertools import count, islice %o A373767 from sympy.ntheory.primetest import is_square %o A373767 def A373767_gen(): # generator of terms %o A373767 k, c = 0, 0 %o A373767 for i in count(1): %o A373767 for n in range(i**3+1,(i+1)**3): %o A373767 k += 1 %o A373767 c += n %o A373767 if is_square(c): %o A373767 yield k %o A373767 A373767_list = list(islice(A373767_gen(),20)) # _Chai Wah Wu_, Jun 18 2024 %Y A373767 Cf. A007412, A109470. %K A373767 nonn %O A373767 1,1 %A A373767 _Michel Marcus_, Jun 18 2024 %E A373767 a(14)-a(35) from _Pontus von Brömssen_, Jun 18 2024