This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373799 #43 Oct 20 2024 23:58:20 %S A373799 2,5,9,14,19,22,25,36,38,43,47,51,56,65,72,74,76,97,100,102,105,107, %T A373799 110,112,115,122,125,128,130,238,255,260,272,284,286,290,293,296,300, %U A373799 316,325,331,562,565,567,575,578,607,610,612,617,627,632,649,651,654,866,875,878 %N A373799 Index of n-th prime in A374965. %H A373799 N. J. A. Sloane, <a href="/A373799/b373799.txt">Table of n, a(n) for n = 1..290</a> (Terms 1 through 289 were obtained using _Harvey P. Dale_'s MMA program for A373798. For a(290), see A375028.) %H A373799 N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=3RAYoaKMckM">A Nasty Surprise in a Sequence and Other OEIS Stories</a>, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; <a href="https://sites.math.rutgers.edu/~zeilberg/expmath/sloane85BD.pdf">Slides</a> [Mentions this sequence] %e A373799 The fifth prime in order of appearance in A374965 is A375028(5) = 751 = A374965(19), so a(5) = 19. %o A373799 (Python) %o A373799 from itertools import count, islice %o A373799 from sympy import isprime, nextprime %o A373799 def A373799_gen(): # generator of terms %o A373799 a, p = 1, 3 %o A373799 for i in count(1): %o A373799 if isprime(a): %o A373799 yield i %o A373799 a = p-1 %o A373799 else: %o A373799 a = (a<<1)+1 %o A373799 p = nextprime(p) %o A373799 A373799_list = list(islice(A373799_gen(),20)) # _Chai Wah Wu_, Jul 29 2024 %Y A373799 Cf. A373798 (first differences), A374965, A375028. %K A373799 nonn %O A373799 1,1 %A A373799 _Harvey P. Dale_ and _N. J. A. Sloane_, Jul 28 2024